DOI: https://doi.org/10.3103/S0735272714050033
Open Access Open Access  Restricted Access Subscription Access
Characteristics of s-resonator and t-resonator of the same length based on inhomogeneities of finite width

Model of impedance delta-inhomogeneities for micro- and nanostructures

M. V. Vodolazka, Evgeniy A. Nelin

Abstract


A model of impedance δ-inhomegeneities for wave micro- and nanostructures of different nature has been proposed. This model combines the advantages of approaches based on δ-function and wave impedance. Analytic expressions were derived for single- and two-phase resonators and crystal-like structures. The characteristics of resonators based on finite width inhomogeneities and δ-inhomogeneities, and also the characteristics of single- and two-phase resonators were compared.


Keywords


impedance delta-inhomogeneity; microstructure; nanostructure; resonator; crystal-like structure

Full Text:

PDF

References


MARKOS, P.; SOUKOULIS, C.M. Wave Propagation from Electrons to Photonic Crystals and Left-Handed Materials. Princeton and Oxford: Princeton University Press, 2008, 352 p.

KHONDKER, A.N.; KHAN, M. REZWAN; ANWAR, A.F.M. Transmission line analogy of resonance tunneling phenomena: The generalized impedance concept. J. Appl. Phys., v.63, n.10, p.5191-5193, 1988. DOI: http://dx.doi.org/10.1063/1.341154.

ANWAR, A.F.M.; KHONDKER, A.N.; KHAN, M. REZWAN. Calculation of the traversal time in resonant tunneling devices. J. Appl. Phys., v.65, n.7, p.2761-2765, 1989. DOI: http://dx.doi.org/10.1063/1.342766.

NELIN, E.A. Impedance model for quantum-mechanical barrier problems. Phys. Usp., v.50, n.3, p.293, 2007. DOI: http://dx.doi.org/10.1070/PU2007v050n03ABEH006091.

NELIN, E.A. Impedance characteristics of crystal-like structures. Tech. Phys., v.54, n.7, p.953-957, 2009. DOI: http://dx.doi.org/10.1134/S1063784209070044.

NELIN, E.A. Resonance parameters of double-barrier structures. Tech. Phys. Lett., v.35, n.5, p.443-445, 2009. DOI: http://dx.doi.org/10.1134/S1063785009050174.

NELIN, E.A. Impedance conditions for resonance propagation and resonance localization of waves in barrier structures. Tech. Phys., v.56, n.1, p.132-134, 2011. DOI: http://dx.doi.org/10.1134/S106378421101018X.

ZERNOV, N.V.; KARPOV, V.G. Theory of Radio Engineering Circuits. Leningrad: Energiya, 1972 [in Russian], 816 p.

GUO, H.; DIFF, K.; NEOFOTISTOS, G.; GUNTON, J.D. Time-dependent investigation of the resonant tunneling in a double-barrier quantum well. Appl. Phys. Lett., v.53, n.2, p.131-133, July 1988. DOI: http://dx.doi.org/10.1063/1.100349.

GORODETSKII, M.L. Foundations of the Theory of Optical Microresonators. Moscow: MGU, 2010 [in Russian], 203 p.

NAZARKO, A.I.; NELIN, E.A.; POPSUI, V.I.; TIMOFEEVA, Y.F. Two-phase electromagnetic crystal. Tech. Phys. Lett., v.37, n.2, p.185-187, 2011. DOI: http://dx.doi.org/10.1134/S1063785011020283.







© Radioelectronics and Communications Systems, 2004–2020
When you copy an active link to the material is required
ISSN 1934-8061 (Online), ISSN 0735-2727 (Print)
tel./fax +38044 204-82-31, 204-90-41