DOI: https://doi.org/10.3103/S0735272714010026
Open Access Open Access  Restricted Access Subscription Access
Phase portrait obtained by simulation of two harmonic components

Enhancing the efficiency of spectral analysis of signals by the Root-MUSIC method using surrogate data

Pavlo Yu. Kostenko, Volodymyr I. Vasylyshyn

Abstract


A problem of enhancing the efficiency of spectral analysis of signals observed against the background of noise by using the Root-MUSIC method and the technology of surrogate data obtained by the randomization of phases of spectral components of observations has been considered. The results of spectral analysis simulation are presented. The application of this technology was shown to be effective at small and large values of the signal-to-noise ratio when the frequencies of signal components are a multiple of the observation sampling frequency.


Keywords


surrogate data; eigenstructure methods; bootstrap; signal-to-noise ratio; randomization

Full Text:

PDF

References


EFRON, B. Nonconventional Methods of Multivariate Statistical Analysis. Moscow: Finansy i Statistika, 1988 [in Russian]. 263 p.

ORLOV, A.I. Econometrics. Moscow: Ekzamen, 2002 [in Russian]. 576 p.

SHITIKOV, V.K. AND ROZENBERG, G.S. Randomization, Bootstrap, and Monte-Carlo Methods. Examples of the Statistical Analysis of Data in Biology and Ecology. Tolyatti, 2012 [in Russian]. 76 p.

ZOUBIR, A.M. AND BOASHASH, B. The bootstrap: Signal processing applications. IEEE SP Magazine (Signal Processing), v.15, p.56-76, 1998.

GERSHMAN, A.B. AND BOHME, J.F. A pseudo-noise approach to direction finding. Signal Processing, v.71, n.5, p.1-13, May 1998.

VASYLYSHYN, V.I. Improved beamspace ESPRIT-based DOA estimation via pseudo-noise resampling. Proc. of European Radar Conf., Amsterdam, Netherlands. Amsterdam, 2012, p. 238-241.

VASYLYSHYN, V. Removing the outliers in Root-MUSIC via pseudo-noise resampling and conventional beamformer. Signal Processing, v.93, n.12, p.3423-3429, 2013.

THEILER, J.S.; EUBANK, S.; LONGTIN, A.; GALDRIKIAN, B.; FARMER, J.D. Testing for nonlinearity in time series: The method of surrogate data. Physica D, v.58, n.1-4, p.77-94, Sept. 1992. PII: S016516841300217X.

SMALL, M. Applied Nonlinear Time Series Analysis Applications in Physics, Physiology and Finance. World Scientific Publishing Co. Pte. Ltd., 2005. 245 p.

KOSTENKO, P.Y.; VASIUTA, K.S.; SYMONENKO, S.N.; BARSUKOV, A.N. Nonparametric BDS detector of chaotic signals against the background of white noise. Izv. Vyssh. Uchebn. Zaved., Radioelektron., v.54, n.1, p.23-31, 2011 [in Russian]. Radioelectron. Commun. Syst., v.54, n.1, p.19-25, 2011. doi: 10.3103/S0735272711010031.

KOSTENKO, P.Y.; VASIUTA, K.S.; SLOBODYANYUK, V.V.; YAKOVENKO, D.S. The use of surrogate signals for enhancing the estimation quality of parameters of regular and chaotic signals observed against the background of additive noise. Systems of Control, Navigation and Communications, n.4, p.28-32, 2010.

KOSTENKO, P.Y.; VASYLYSHYN, V.I.; SYMONENKO, S.N.; VYSOTSKII, O.V.; YAKOVENKO, D.S. Enhancing the efficiency of coherent processing of chaotic signals during the transmission of binary messages using surrogate signals. Izv. Vyssh. Uchebn. Zaved., Radioelektron., v.55, n.7, p.24-33, 2012 [in Russian]. Radioelectron. Commun. Syst., v.55, n.7, p.307-314, 2012. doi: 10.3103/S0735272712070035.

MARPLE, S.L., Jr. Digital Spectral Analysis with Applications. New Jersey: Prentice Hall, 1987. 584 p.

STOICA, P. AND MOSES, R.L. Introduction to Spectral Analysis. Prentice Hall, 1997.

SHIRMAN, Y.D. Resolution and Compression of Signals. Moscow: Sov. Radio, 1974 [in Russian].

JONSON, D.H. The application of spectral estimation methods to bearing estimation problems. Proc. IEEE, v.70, n.9, p.1018-1028, Sept. 1982. doi: 10.1109/PROC.1982.12430.

GERSHMAN, A.B.; BOHME, Johann F. Improved DOA estimation via pseudorandom resampling of spatial spectrum. IEEE Signal Process. Lett., v.4, n.2, p.54-57, Feb. 1997. doi: 10.1109/97.554472.

GERSHMAN, ALEX B. Pseudo-randomly generated estimator banks: a new tool for improving the threshold performance of direction finding. IEEE Trans. Signal Process., v.46, n.5, p.1351-1364, May 1998. doi: 10.1109/78.668797.

VASYLYSHYN, V.I. Direction finding with superresolution using root implementation of eigenstructure techniques and joint estimation strategy. Proc. of European Conf. on Wireless Technology, 11–12 Oct. 2004, Amsterdam, Netherlands. Amsterdam, 2004, p.101-104.

STOICA, PETRE; ERIKSSON, ANDERS. MUSIC estimation of real-valued sine-wave frequencies. Signal Processing, v.42, n.2, p.139-146, Mar. 1995. PII: 016516849400123H.







© Radioelectronics and Communications Systems, 2004–2020
When you copy an active link to the material is required
ISSN 1934-8061 (Online), ISSN 0735-2727 (Print)
tel./fax +38044 204-82-31, 204-90-41