Two-stage mutual causal filtration and segmentation of heterogeneous images


  • S. V. Vishnevyy National Technical University of Ukraine "Kyiv Polytechnic Institute", Ukraine
  • Serhii Ya. Zhuk Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine



heterogeneous image, quasi-optimal algorithm


Using the mathematical technique of mixed Markovian processes in discrete time optimal and quasi-optimal algorithms that combine results of one-dimensional filtration and segmentation of heterogeneous images are synthesized. Analysis of the quasi-optimal algorithm is conducted on a model example using statistical modeling on PC.


R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice Hall, New Jersey, 2002; Tekhnosfera, Moscow, 2005).

Y. J. Zhang, Advances in Image and Video Segmentation (IRM Press, Hershey–London–Melbourne–Singapore, 2006).

A. K. Jain, Fundamentals of Digital Image Processing (Prentice Hall, New Jersey, 1989).

B. Jhne, Digital Image Processing (Springer, Berlin–Heidelberg–New York–Barcelona–Hong Kong–London–Milan–Paris–Tokyo, 2002).

W. Pratt, Digital Image Processing (John Wiley & Sons Inc., New York, 1991; Mir, Moscow, 1982).

Methods of Computer Image Processing (Fizmatlit, Moscow, 2003) [in Russian, ed. by V. А. Soyfer].

I. S. Gruzman, V. I. Mikerin, and А. А. Spector, “Two-stage images filtering on the basis of using limited data,” Radiotekh. Elektron., No. 5, 817 (1995).

S. Ya. Zhuk, “Joint filtering of mixed Markov processes in discrete time,” Radioelectron. Commun. Syst., v.31, n.1, p.29-35, 1988.

S. Ya. Zhuk, Methods of Optimizing Discrete Dynamic Systems with Random Structure (NTUU KPI, Kyiv, 2008) [in Russian].

S. V. Vishnevyy and S. Ya. Zhuk, “Mutual filtering and segmentation of heterogeneous random fields with exponentially correlated textures,” Visnyk NTUU KPI. Ser. Radiotekhnika. Radioaparatobuduvannya, No. 39, 47 (2009).





Research Articles