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Abstract—One of the possible physical mechanisms of so-called “angel” echoes, not visually observed

radar discrete reflections from objects, is considered. The vortex flows can be the cause of “angel” echoes.

They take out some volume of air with certain radiophysical parameters into the region of space with other

radiophysical parameters of the air. Toroidal vortices (vortex rings) have a fairly long lifetime and can

move to considerable distances without destruction. The calculation of radio wave scattering diagrams by

vortex rings by modern universal programs designed to solve electrodynamic problems and based on the

method of moments requires significant computational and time resources. The asymptotic calculation

method of the electromagnetic waves scattering by dielectric toroidal formations of large radius is

developed. Simulation and comparison of its results with calculations in Altair Feko is carried out, and

their well coincidence is shown. The monostatic and bistatic effective scattering areas of vortex rings are

calculated for interesting cases in practice. The calculation results for the monostatic location good

enough coincide with the results of known experimental works.
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1. INTRODUCTION

The radio wave propagation environment is an integral part of any radio engineering system (RES).

There are various radiophysical models, describing the dependence of the electrical properties of

environment via coordinates and time, to assess the influence of radio wave propagation conditions on the

quality of RES operation. These can be general models of the atmosphere or its separate parts (ionosphere,

troposphere, boundary planetary layer) depending on the scope of RES.

Since the atmosphere is the gaseous shell of the Earth, and the relative magnetic permeability of

atmospheric gases is very close to 1 with insignificant changes in terrestrial conditions, usually we talk about

the dielectric permittivity of the air �. In general case, � depends on time and coordinates, is a complex

quantity described stochastically, with average quasi-constant and variable components. Their average

values are determined by the averaging scale in time and space and, in turn, depend on the motion scale in the

atmosphere [1].

The dynamic structure of the atmosphere leads to spatiotemporal inhomogeneities of its radiophysical

properties. Slow vertical movement and the air stratification in the boundary planetary layer can lead to

occurrence of the tropospheric radio waveguides, and significantly increase the RES range. And active air

mixing in the troposphere averages its characteristics, reduces vertical refraction, and as a result, the RES

range [2].

The appearance of the coherent discrete reflections from not observed visually objects (“angel” echoes)

is a separate problem in radar [3]. Classification of the received marks remains rather difficult even for

modern radar equipment [4].

As a result of processing a large amount of experimental data and analysis of concomitant factors

(season, time of day, temperature near the Earth surface), one part of the “angel” echoes (AE) is attributed to

the reflections from individual large birds or flocks of small one, and other part of AE is attributed to the

reflections from swarms of insects. Another part of the reflections is caused by inhomogeneities of the
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