Study of Indoor Radio Coverage Performance of Dual Technology Co-Existing MIMO Antenna Platform for Low Power Wireless Base Station

Saroj K. Patro^{1*}, Rabindra K. Mishra^{2**}, and A. K. Panda^{1***}

National Institute of Science and Technology, Berhampur, India ²Berhampur University, Berhampur, India *e-mail: <u>srj_patro@yahoo.com</u> **e-mail: <u>prof.r.k.mishra@gmail.com</u> ***e-mail: <u>akpanda62@hotmail.com</u> Received April 17, 2019 Revised October 22, 2019 Accepted January 12, 2020

Abstract—In this paper, we present the radiated mode indoor radio coverage performance study of a co-existing dual technology, dual 4×4 Multiple Input Multiple Output (MIMO) antenna platform. The antenna platform is targeted to be used for low power wireless radio Base Station (BS) applications. One of the 4×4 MIMO antenna pairs operates in the 2.5–2.7 GHz licensed Long Term Evolution (LTE) band while the other MIMO antenna pair operates in the 2.4 GHz unlicensed Wireless Fidelity (Wi-Fi) Industrial Scientific Medical (ISM) band. This radio performance study is carried out to analyze, predict and verify the impact of multi-radio co-existence on the radiated mode indoor coverage performance in an Over-The-Air (OTA) scenario. The study involves OTA radio propagation modeling, prediction and verification both for a near field and far field scenario. While the near field coverage is studied in a small form factor controlled shield box environment, the far field coverage study is undertaken over a 780 ft² indoor enterprise coverage area. The test result shows the worst case LTE signal level is -77.7, -75, and -76.03 dBm, respectively, over a 3.6 m obstructed radial Line Of Sight (LOS) distance.

DOI: 10.3103/S0735272720020028

INTRODUCTION

With the pervasive nature of modern wireless technologies, there is an ever demanding need to maximize the end-to-end system throughput for the end user requirements and applications [1, 2]. In order to support this requirement and to enhance the last-mile radio access performance, the wireless Base Stations (BS) are increasingly becoming lower powered units with the effective and efficient usage of multi-standard radio access technologies and architectures [3].

Generally these are two major categories of radio access technologies, such as the licensed radio technology and the un-licensed radio technology. While the licensed radio technology must be compliant to the Third Generation Partnership Project (3GPP) [4, 5] such as Long Term Evolution (LTE), the unlicensed radio technology must be compliant to the Wireless-Fidelity (Wi-Fi) 802.11 standards [6].

In many cases, the modern multi-standard radio base stations incorporate a mix of radio hardware sub-blocks which co-exist as part of the same radio device or system (Fig. 1). Here, the LTE radio is the first set of radio technology and Wi-Fi is the second set of radio technology. In this context of co-existing dual wireless technologies, it is crucial to analyze any adverse impact effect of one technology onto the other in a simultaneous operational mode.

Ng et al. [7] has analyzed inter-3GPP radio system co-existence related aspects and parameters in detail. The Universal Mobile Telecommunication Systems (UMTS)-to-Wi-Fi antenna co-existence aspects are shown in [8] with real antenna orientation in a measurement scenario but these are purely taken from the antenna impacts of scattering parameters (S-parameters). Farshad et al. [9] experimentally investigated co-existence aspects among different 802.11 radios with a stress to the system level throughput and antenna polarization aspects for single-band and dual band cases.

DECLARATION

The authors declare that the work has not been published previously.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

ADDITIONAL INFORMATION

The initial version of this paper in Russian is published in the journal "Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika," ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link <u>http://radio.kpi.ua/article/view/S0021347020020028</u> with DOI: <u>10.20535/S0021347020020028</u>.

REFERENCES

- Y. Cao, E. J. Sunde, K. Chen, "Multiplying channel capacity: Aggregation of fragmented spectral resources," *IEEE Microwave Mag.* 20, No. 1, 70 (2019). DOI: <u>10.1109/mmm.2018.2875631</u>.
- Ye, Y.; Wu, D.; Shu, Z.; Qian, Y. "Overview of LTE spectrum sharing technologies," *IEEE Access* 4, 8105 (2016). DOI: <u>10.1109/access.2016.2626719</u>.
- 3. 3. Digital cellular telecommunications system (Phase 2+); Universal Mobile Telecommunications System (UMTS); LTE; E-UTRA, UTRA and GSM/EDGE; Multi-Standard Radio (MSR) Base Station (BS) conformance testing (3GPP TS 37.141 version 11.2.1 Release 11) (ETSI, 2012-10).
- 4. LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) conformance testing (3GPP TS 36.141 version 9.11.0 Release 9, ETSI TS 136 141 V9.11.0 (2012-10).
- 5. LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) conformance testing (3GPP TS 36.141 version 10.1.0 Release 10), ETSI TS 136 141 V10.1.0 (2011-01).
- 802.11n-2009 IEEE Standard for Information technology—Local and metropolitan area networks— Specific requirements— Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 5: Enhancements for Higher Throughput, C/LM - LAN/MAN Standards Committee (2009). DOI: <u>10.1109/ieeestd.2009.5307322</u>.
- M. H. Ng, S.-D. Lin, J. Li, S. Tatesh, "Coexistence studies for 3GPP LTE with other mobile systems," *IEEE Commun. Mag.* 47, No. 4, 60 (2009). DOI: <u>10.1109/mcom.2009.4907408</u>.
- E. Kotobelli, R. Kushe, "Wi-Fi behavior in presence of UMTS for indoor environment," *Proc. of IEEE Int. Conf.* on Network-Based Information Systems, 7-9 Sept. 2011, Tirana, Albania (IEEE, 2011), pp. 502-506. DOI: 10.1109/nbis.2011.82.
- 9. A. Farshad, M. K. Marina, F. Garcia, "Experimental investigation of coexistence interference on multi-radio 802.11 platforms," *Proc. of 10th Int. Symp. on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks*, WiOpt, 14-18 May 2012, Paderborn, Germany (IEEE, 2012), pp. 293-298. URI: <u>https://ieeexplore.ieee.org/document/6260470</u>.
- Z. Hu, R. Susitaival, Z. Chen, I-Kang Fu, P. Dayal, S. K. Baghel, "Interference avoidance for in-device coexistence in 3GPP LTE-advanced: challenges and solutions," *IEEE Commun. Mag.* 50, No. 11, 60 (2012). DOI: 10.1109/mcom.2012.6353683.
- Z. Zheng, J. Wang, X. Peng, C. Zhao, "Coexistence analysis between WCDMA and TD-LTE systems in multimode terminals," *Proc. of IEEE Int. Conf. on Computational Intelligence and Communication Networks*, 14-16 Nov. 2014, Bhopal, India (IEEE, 2014), pp. 295-299. DOI: <u>10.1109/cicn.2014.73</u>.
- S. V. Zaitsev, V. V. Kazymyr, "Method for adaptive decoding in case of information transmission in condition of influence of deliberate noise," *Radioelectron. Commun. Syst.* 58, No. 5, 212 (2015). DOI: <u>10.3103/</u> <u>s0735272715050039</u>.
- S. Sagari, I. Seskar, D. Raychaudhuri, "Modeling the coexistence of LTE and WiFi heterogeneous networks in dense deployment scenarios," *Proc. of IEEE Int. Conf. Communication Workshop*, ICCW, 8-12 Jun. 2015, London, UK (IEEE, 2015), pp. 10367–10372. DOI: <u>10.1109/iccw.2015.7247524</u>.
- 14. Enterprise multi-Femtocell Deployment Guidelines (Qualcomm Inc., 2011).
- 15. D. Micheli, M. Barazzetta, C. Carlini, Riccardo Diamanti, V. M. Primiani, F. Moglie, "Testing of the carrier aggregation mode for a live LTE base station in reverberation chamber," *IEEE Trans. Vehicular Technology* **66**, No. 4, 3024 (2016). DOI: <u>10.1109/tvt.2016.2587662</u>.
- Z. Zhou, F. Teng, J. Liu, W. Xiao, "Performance evaluation for coexistence of LTE and WiFi," *Proc. of Int. Conf.* on Computing, Networking and Communications, ICNC, 15-18 Feb. 2016, Kauai, USA (IEEE, 2016), pp. 1-6. DOI: <u>10.1109/icenc.2016.7440570</u>.
- 17. S. R. Saunders, A. Aragon-Zavala, Antennas and Propagation for Wireless Communication Systems, 2nd ed. (John Wiley and Sons, 2007). URI: <u>https://www.wiley.com/en-us/Antennas+and+Propagation+for+Wireless+Communication+Systems%2C+2nd+Edition-p-9780470848791</u>.
- T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, M. Salazar-Palma, "A survey of various propagation models for mobile communication," *IEEE Antennas Propag. Mag.* 45, No. 3, 51 (2003). DOI: <u>10.1109/map.2003.1232163</u>.
- 19. A. Hrovat, G. Kandus, T. Javornik, "A survey of radio propagation modeling for tunnels," *IEEE Commun. Surveys Tutorials* 16, No. 2, 658 (2014). DOI: <u>10.1109/surv.2013.091213.00175</u>.
- 20. G. Castro, R. Feick, M. Rodriguez, R. Valenzuela, D. Chizhik, "Outdoor-to-indoor empirical path loss models: analysis for pico and femto cells in street canyons," *IEEE Wireless Commun. Lett.* **6**, No. 4, 542 (2017). DOI: 10.1109/lwc.2017.2715169.
- V. Degli-Esposti, J. S. Lu, J. N. Wu, J. J. Zhu, J. A. Blaha, E. M. Vitucci, F. Fuschini, M. Barbiroli, "A semi-deterministic method for predicting indoor cellular coverage in dense urban areas," *Proc. of 10th European Conf. on Antennas and Propagation, EuCAP*, 10-15 Apr. 2016, Davos, Switzerland (IEEE, 2016), pp. 1-3. DOI: 10.1109/eucap.2016.7481845.
- W. Fan, I. Carton, P. Kyosti, G. F. Pedersen, "Emulating ray-tracing channels in multiprobe anechoic chamber setups for virtual drive testing," *IEEE Trans. Antennas Propag.* 64, No. 2, 730 (2016). DOI: <u>10.1109/tap.2015.</u> 2498951.
- X. Wu, Z. Liu, Z. Zhang, C.-H. Liao, Z. Quan, "MIMO OTA testing on WiFi devices and 3D channel modeling in multi-probe anechoic chamber systems," *Proc. of Progress In Electromagnetic Research Symp.*, PIERS, 8-11 Aug. 2016, Shanghai, China (IEEE, 2016), pp. 4275-4281. DOI: <u>10.1109/piers.2016.7735601</u>.

PATRO et al.

- 24. M. B. El Mashade, B. M. El Saghir, "Performance characterization of MIMO channels with hybrid diversity," *Radioelectron. Commun. Syst.* 62, No. 6, 286 (2019). DOI: <u>10.3103/s0735272719060049</u>.
- 25. iBwave, Indoor propagation modeling SW Tool (2016).
- 26. Rec. ITU-R P.1238-1. Propagation Data and Prediction Methods for the Planning of Indoor Radio Communication Systems and Radio Local Area Networks in the Frequency Range 900MHz to 100GHz, International Telecommunication Union (1997–1999).
- 27. Rep. ITU-R M.2134. *Requirements related to technical performance for IMT-Advanced radio interface(s)*, International Telecommunication Union (2008).
- 28. Rep. ITU-R M.2135. *Guidelines for evaluation of radio interface technologies for IMT-Advanced*, International Telecommunication Union (2008).
- 29. V. Degli-Esposti, E. M. Vitucci, R. Martin, "A simple and versatile field prediction model for indoor and indoor-to-outdoor propagation," *IEEE Access* 5, 13270 (2017). DOI: <u>10.1109/access.2017.2715119</u>.