High Efficiency Waveguide-Planar Amplifier with Spatial Power Combining for Frequency Range 31-39 GHz

M. Yu. Omelianenko^{*} and T. V. Romanenko^{**}

National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine *ORCID: 0000-0002-6307-0220, e-mail: omikle@ukr.net

> Received January 29, 2018 Revised May 13, 2019 Accepted May 22, 2019

Abstract—The article presents the development results of the hybrid-integrated waveguide-planar amplifier circuit for 8-mm wave range with spatial power combining. Affordable and inexpensive low-noise UMS CHA2494-QEC integrated amplifiers are used in the developed circuit. To improve the efficiency of power combining, new longitudinal probe transition designs from a rectangular waveguide to a coplanar strip line (CSL), and to a microstrip line (MSL), whose dimensions do not exceed $0.4\lambda_0$, are proposed. As a result of the amplifier electromagnetic system development, a high efficiency of power combining has been achieved up to $\eta \approx 85\%$. The paper presents the experimental results of phase-shift keyed signals transmission through the developed amplifier with a signal level that is slightly lower than the level of 1 dB gain compression. On the basis of the proposed model, the amplifier degradation was also theoretically investigated for various failure modes of one of its active elements.

DOI: 10.3103/S0735272719050017

INTRODUCTION

Increasing the power of monolithic and hybrid-integrated circuits of the millimeter-wave amplifiers is an urgent problem and a lot of attention is paid to an appropriate solution. One of the effective ways to solve this problem is the spatial power combining, which eliminates losses for such systems with a tree structure [1–4].

Usually, it is necessary to solve the task of obtaining power of the order of tens to hundreds of watts. For this purpose, these devices include a significant number of active elements. However, spatial power combiners (SPC) can be useful as structural elements and in low-power circuits. For example, in the transceivers of the millimeter range communication systems, SPC can be used as a base oscillator amplifier for frequency converters or as a transmitter output amplifier, where the output power is of the order of 15–20 dBm.

In this case, the spatial power combiner must meet a number of special requirements, the main of which are completely planar structure, maximum efficiency of power combining, broadband and minimum cost.

The main purpose of this work is to create a hybrid-integrated waveguide-planar circuit (HIC) of the 8-mm wave range amplifier with spatial power combining that meets the stated earlier requirements.

1. ELECTROMAGNETIC SYSTEM OF AMPLIFIER HIC WITH SPC

A coplanar strip-line (CSL) with weak couplings is the electromagnetic basis of the amplifier proposed in this work. The coupling coefficient is determined as

$$k = \frac{2|\beta_{\rm e} - \beta_{\rm o}|}{\beta_{\rm e} + \beta_{\rm o}},$$

where β_e , β_o are phase constants of even and odd wave types. The value of k did not exceed the value of 0.03.

Unlike [3], where the active part of the amplifier's HIC is also a CSL, to excite CSL from a standard rectangular waveguide we did not use smooth transitions with intermediate fin-line sections. Instead we

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

ADDITIONAL INFORMATION

The initial version of this paper in Russian is published in the journal "Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika," ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link <u>http://radio.kpi.ua/article/view/S0021347019050017</u> with DOI: <u>10.20535/S0021347019050017</u>.

REFERENCES

- 1. F. Sechi, M. Bujatti, Solid-State Microwave High-Power Amplifiers (Artech House, 2009).
- M. P. DeLisio, R. A. York, "Quasi-optical and spatial power combining," *IEEE Trans. Microwave Theory Tech.* 50, No. 3, 929 (2002). DOI: <u>10.1109/22.989975</u>.
- J. Jeong, Y. Kwon, S. Lee, C. Cheon, E. A. Sovero, "1.6- and 3.3-W power-amplifier modules at 24 GHz using waveguide-based power-combining structures," *IEEE Trans. Microwave Theory Tech.* 48, No. 12, 2700 (2000). DOI: 10.1109/22.899033.
- C.-F. Chou, Y.-H. Hsiao, Y.-C. Wu, Y.-H. Lin, C.-W. Wu, H. Wang, "Design of a V-band 20-dBm wideband power amplifier using transformer-based radial power combining in 90-nm CMOS," *IEEE Trans. Microwave Theory Tech.* 64, No. 12, 4545 (2016). DOI: 10.1109/tmtt.2016.2623781.
- P. J. Meier, "Printed-circuit balanced mixer for the 4- and 5-mm bands," *IEEE MTT-S Int. Microwave Symp. Dig.*, 30 Apr.-2 May 1979, Orlando, USA (IEEE, 1979), pp. 84-86. DOI: <u>10.1109/mwsym.1979.1123979</u>.
- N. Kaneda, Y. Qian, T. Itoh, "A broad-band microstrip-to-waveguide transition using quasi-Yagi antenna," *IEEE Trans. Microwave Theory Tech.* 47, No. 12, 2562 (1999). DOI: <u>10.1109/22.809007</u>.
- Boro M. Reljić, "Novel MIC/MMIC compatible microstrip to waveguide transition for X band without a balun," Mikrotalasna Revija, June, 16 (2007).
- 8. J.-K. Chuang, R.-Y. Fang, C.-L. Wang, "Compact and broadband microstrip-to-waveguide transition using antisymmetric tapered probes," *Electron. Lett.* **48**, No. 6, 332 (2012). DOI: <u>10.1049/el. 2011.3673</u>.

RADIOELECTRONICS AND COMMUNICATIONS SYSTEMS Vol. 62 No. 5 2019