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The paper presents numerical results of design of nonlinear electronic networks based on the

problem formulation in terms of the control theory. Several examples illustrate the prospects of the

approach suggested.

This part of the work contains examples of comparative design of nonlinear passive and active electronic networks to

illustrate the ideas formulated within the framework of the new approach reported in Part 1 [1]. The primary emphasis is

placed on demonstration of new opportunities appearing due to application of the new methodology. The number of nodes

in the networks taken for illustrations varies from 3 to 5 (M � [3, 5]). We consider the problem of dc analysis, where the

objective function C(X) is defined as the sum of squared differences between the preset and current values of nodal

voltages for some nodes, supplemented by additional inequalities for some elements of the network. The calculations

presented below correspond to two different optimization methods: the gradient method and the Davidon-Fletcher-Powell

method (DFP).

The basic system of equations ((15) and (16) presented in [1]) was integrated by the fourth-order Runge-Kutta

method. The integration step was chosen optimal and independent for every new strategy to minimize the processor

running time. The processor operation time indicated in the calculations corresponds to a computer with a Pentium-4, 2.2

GHz processor.

Figure 1 shows the equivalent circuit of the network to be designed. The circuit has four independent variables (K = 4),

conductances y1, y2, y3, and y4, three dependent variables (M = 3), nodal voltages V1, V2, V3, and two nonlinear elements.

The nonlinear elements are defined as follows: y a b Vn n n1 1 1 1

2� � , y a b Vn n n2 2 2 2

2� � . The nonlinearity parameters

are bn1 = bn2 = 1. The components of the vector X are defined by formulas x y x y
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x V6 2� , x V7 3� . Defining the components x1, x2, x3, and x4 by the above formulas automatically results in positive

magnitudes of the conductance, which eliminates the issue of positive definiteness of the resistances and conductances and

makes it possible to carry out the optimization in the whole space of magnitudes of these variables without any limitations.

In this case we have a system of seven equations playing the role of the optimization algorithm, while the network

model can be expressed by three nonlinear equations:
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