MEASUREMENT OF THE PHASE OF A QUASI-HARMONIC SIGNAL
ON A BACKGROUND OF INTERFERENCE WITH A NONSYMMETRICAL SPECTRUM

V. D. Rubtsov, I. Yu. Gerasimov, V. G. Lukashkin,
and V. S. Uvarov

Izvestiya VUZ. Radioelektronika,
Vol. 31, No. 1, pp. 93-95, 1988

UDC 621.391.8

We will consider the estimate of the accuracy of phase measurements on a background of interference with a nonsymmetrical spectrum, which occurs when the frequency of the received signal does not coincide exactly with the frequency of the linear filters of the phase-measuring device. In this case we measure the phase of a quasi-harmonic signal

\[x(t) = A(t) \cos(\omega t + \theta), \quad 0 \leq t \leq T \]

(1)
on a background of nonstationary Gaussian interference \(n(t) \) with correlation function

\[B(t, u) = b_1(t, u) \cos(\omega(t - u)) - b_2(t, u) \sin(\omega(t - u)), \]

(2)
corresponding, in the stationary case, to a nonsymmetrical interference spectrum.

The functional of the likelihood ratio for this case [1] can be written in the form

\[L[x(t) | \theta] = \exp \left\{ -\frac{1}{2} \int_0^T A(t) f_1(t) dt \right\} \exp \left\{ 2 \cos \theta \int_0^T x(t) v_2(t) dt + \right. \]

\[+ 2 \sin \theta \int_0^T x(t) v_1(t) dt, \]

where

\[x(t) = z(t) + n(t); \quad v_1(t) = f_1(t) \cos \omega t + f_2(t) \sin \omega t; \]

\[v_2(t) = f_1(t) \cos \omega t - f_2(t) \sin \omega t. \]

Here \(f_1(t), f_2(t) \) are the solutions of the integral equations:

\[\int_0^T b_1(t, u) f_1(u) du = A(t); \]

(3)

\[\int_0^T b_2(t, u) f_2(u) du = \int_0^T b_2(t, u) f_1(u) du. \]

(4)

In this case the maximum-likelihood estimate of the signal phase is

\[\theta^* = \arctg(Y/X) + \pi n, \]

(5)

where

\[X = \int_0^T x(t) v_1(t) dt; \quad Y = \int_0^T x(t) v_2(t) dt; \]

\[n = \begin{cases} 0, & X > 0; \\ 1, & X < 0. \end{cases} \]

The random quantities \(X \) and \(Y \) are normal, since they were obtained as a result of linear operations on the normal random process \(x(t) \). For average values of the variance of the random quantities \(X \) and \(Y \) and of the correlation coefficient between them, the following expressions hold:

© 1988 by Allerton Press, Inc.
REFERENCES

Revised 2 October 1986