Synthesis of plane waveguide arrays taking into account mutual coupling of radiators

Authors

DOI:

https://doi.org/10.3103/S0735272721090028

Keywords:

plane rectangular array, analysis (direct) electrodynamic problem, synthesis (inverse) problem, variational statement, mutual coupling of radiators, numerical modeling

Abstract

The variational approach is used for solving the synthesis problem of plane rectangular array with waveguide excitation of its elements. The proposed functional includes three components that allow us to minimize the mean square deviation of the given and synthesized amplitude radiation patterns (RP), the value of the field amplitude in the given near zone regions, and the norm of excitation coefficients of the array elements. The mutual coupling of separate array radiators is taken into account solving the corresponding electrodynamic problem. The Hallen’s integral equation is used to determinate the current distribution in the array radiators. The optimal excitation coefficients of the radiators are determined minimizing the proposed functional, it is reduced to solving the nonlinear Euler integral equations system, since the amplitude radiation characteristics are the input data of the problem. The resulting system of nonlinear integral equations is solved efficiently by the method of successive approximations; the relaxation is its characteristic feature. The calculation results show that the developed approach can be used for arrays with different configurations, in particular with hexagonal placement of radiators.

References

L. D. Bakhrakh, S. D. Kremenetsky, Synthesis of Radiating Systems (Theory and Calculation Methods), [in Russian]. Moscow: Sov. Radio, 1974.

E. G. Zelkin, V. G. Sokolov, Methods of Antenna Synthesis. Phased Antenna Arrays and Antennas with Plane Aperture, [in Russian]. Moscow: Sov. Radio, 1980.

Y. Dou, K.-L. Wu, “Nature of antenna radiation revealed by physical circuit model,” IEEE Trans. Antennas Propag., vol. 69, no. 1, pp. 84–96, 2021, doi: https://doi.org/10.1109/TAP.2020.3008676.

B. Zhang, Y. Rahmat-Samii, “Robust optimization with worst case sensitivity analysis applied to array synthesis and antenna designs,” IEEE Trans. Antennas Propag., vol. 66, no. 1, pp. 160–171, 2018, doi: https://doi.org/10.1109/TAP.2017.2772312.

G. Bogdan, K. Godziszewski, Y. Yashchyshyn, C. H. Kim, S.-B. Hyun, “Time-modulated antenna array for real-time adaptation in wideband wireless systems—Part I: design and characterization,” IEEE Trans. Antennas Propag., vol. 68, no. 10, pp. 6964–6972, 2020, doi: https://doi.org/10.1109/TAP.2019.2902755.

W. P. M. N. Keizer, “Synthesis of monopulse antenna patterns for elliptical phased array antennas with different peak sidelobes along the principal planes,” IEEE Trans. Antennas Propag., vol. 67, no. 9, pp. 5943–5950, 2019, doi: https://doi.org/10.1109/TAP.2019.2916644.

F. F. Dubrovka, S. I. Piltyay, “Ultrawideband microwave biconical high-gain antenna for dual-band systems of omnidirectional radio monitoring,” Radioelectron. Commun. Syst., vol. 63, no. 12, pp. 619–632, 2020, doi: https://doi.org/10.3103/S0735272720120018.

V. P. Riabukha, A. V. Semeniaka, Y. A. Katiushyn, “Mathematical models of cross-correlated and uncorrelated Gaussian noise jamming from external sources,” Radioelectron. Commun. Syst., vol. 64, no. 3, pp. 147–154, 2021, doi: https://doi.org/10.3103/S0735272721030043.

R. J. Mailloux, Phased Array Antenna Handbook, Third Edition. Artech House, 2017.

J. S. Herd, M. D. Conway, “The evolution to modern phased array architectures,” Proc. IEEE, vol. 104, no. 3, pp. 519–529, 2016, doi: https://doi.org/10.1109/JPROC.2015.2494879.

F. S. Akbar, L. P. Ligthart, G. Hendrantoro, I. E. Lager, “Use of subarrays in linear array for improving wide angular scanning performance,” IEEE Access, vol. 7, pp. 135290–135299, 2019, doi: https://doi.org/10.1109/ACCESS.2019.2941398.

A. Naqvi, S. Lim, “Review of recent phased arrays for millimeter-wave wireless сommunication,” Sensors, vol. 18, no. 10, p. 3194, 2018, doi: https://doi.org/10.3390/s18103194.

J. W. Zang, A. Alvarez-Melcon, J. S. Gomez-Diaz, “Nonreciprocal phased-array antennas,” Phys. Rev. Appl., vol. 12, no. 554008, 2019, doi: https://doi.org/10.1103/PhysRevApplied.12.054008.

R. E. Collin, F. J. Zucker, Antenna Theory. Part 1. New York: McGraw-Hill, 1969.

А. Pandey, Practical Microstrip and Printed Antenna Design. Boston: Artech House, 2019, uri: https://us.artechhouse.com/Practical-Microstrip-and-Printed-Antenna-Design-P2002.aspx.

F. Zhang, W. Fan, J. Zhang, G. F. Pedersen, “Virtual large-scale array beamforming analysis using measured subarray antenna patterns,” IEEE Access, vol. 5, pp. 19812–19823, 2017, doi: https://doi.org/10.1109/ACCESS.2017.2737655.

G. S. Cheng, C.-F. Wang, “A novel periodic characteristic mode analysis method for large-scale finite arrays,” IEEE Trans. Antennas Propag., vol. 67, no. 12, pp. 7637–7642, 2019, doi: https://doi.org/10.1109/TAP.2019.2934781.

M. I. Andriychuk, N. N. Voitovich, P. O. Savenko, V. P. Tkachuk, Antenna Synthesis Based on the Amplitude Radiation Pattern. Numerical Methods and Algorithms, [in Ukrainian]. Kyiv: Naukova Dumka, 1993.

J. H. Kim, S. W. Choi, “A deep learning-based approach for radiation pattern synthesis of an array antenna,” IEEE Access, vol. 8, pp. 226059–226063, 2020, doi: https://doi.org/10.1109/ACCESS.2020.3045464.

N. V. Anyutin, K. I. Kurbatov, I. M. Malay, M. A. Ozerov, “Algorithm for transforming antenna electromagnetic near-field measured on spherical surface into far-field based on direct calculation of Stratton and Chu formulas,” Radioelectron. Commun. Syst., vol. 62, no. 3, pp. 109–118, 2019, doi: https://doi.org/10.3103/S0735272719030026.

Y. N. Feld, Antennas of a Centimeter Range, [in Russian]. Moscow: Sov. Radio, 1950.

M. I. Andriychuk, “Investigation of solution of the nonlinear synthesis problem for the waveguide array,” in Proceedings of 5th International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (IEEE Cat. No.00TH8508), 2000, pp. 47–51, doi: https://doi.org/10.1109/DIPED.2000.890000.

P. O. Savenko, “Method of implicit functions in the solution of multiparameter nonlinear spectral problems,” Math. Methods Physicomechanical Fields, vol. 63, no. 2, pp. 36–49, 2020.

A. S. Vander Vorst, A. A. Laloux, R. J. M. Govaerts, “A computer optimization of the Rayleigh-Ritz method,” IEEE Trans. Microw. Theory Tech., vol. 17, no. 8, pp. 454–460, 1969, doi: https://doi.org/10.1109/TMTT.1969.1126996.

A. G. Ramm, “A collocation method for solving integral equations,” Int. J. Comput. Sci. Math., vol. 2, no. 3, p. 222, 2009, doi: https://doi.org/10.1504/IJCSM.2009.027874.

P. Savenko, “Computational methods in the theory of synthesis of radio and acoustic radiating systems,” Appl. Math., vol. 04, no. 03, pp. 523–549, 2013, doi: https://doi.org/10.4236/am.2013.43078.

C. A. Valagiannopoulos, A. Alu, “The role of reactive energy in the radiation by a dipole antenna,” IEEE Trans. Antennas Propag., vol. 63, no. 8, pp. 3736–3741, 2015, doi: https://doi.org/10.1109/TAP.2015.2436410.

M. I. Andriychuk, O. O. Bulatsyk, N. N. Voitovich, “Comparing different approaches to linear antenna synthesis problems according to power radiation pattern,” in 2014 XIXth International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), 2014, pp. 15–18, doi: https://doi.org/10.1109/DIPED.2014.6958307.

M. I. Andriychuk, N. N. Voytovich, “Synthesis of a closed planar antenna with a given amplitude pattern,” Sov. J. Commun. Technol. & Electron. (English Transl. Radiotekhnika i Elektron., vol. 30, no. 5, pp. 35–40, 1985.

M. I. Andriychuk, V. F. Kravchenko, P. A. Savenko, M. D. Tkach, “Synthesis of plane radiating systems according to the prescribed power radiation pattern,” Phys. Bases Instrum., vol. 2, no. 3, pp. 40–55, 2013, doi: https://doi.org/10.25210/jfop-1303-040055.

M. M. Vainberg, V. A. Trenogin, Theory of Branching of Nonlinear Equations Solutions, [in Russian]. Moscow: Nauka, 1969.

M. Khalaj-Amirhosseini, G. Vecchi, P. Pirinoli, “Near-Chebyshev pattern for nonuniformly spaced arrays using zeros matching method,” IEEE Trans. Antennas Propag., vol. 65, no. 10, pp. 5155–5161, 2017, doi: https://doi.org/10.1109/TAP.2017.2737041.

Configuration of plane rectangular array with waveguide excitation

Published

2021-12-04