DOI: https://doi.org/10.3103/S0735272720060047
Open Access Open Access  Restricted Access Subscription Access
Nanowire biosensor structure

Increased sensitivity of biosensors using evolutionary algorithm for bio-medical applications

Irfan Ahmad Pindoo, Sanjeet K. Sinha

Abstract


The use of bio-medical applications and bio-inspired computing facilitates the diagnosis of human health. The main work of bio-medical applications relies mostly over the biosensors. Biosensor construction are based on piezoelectric, chemical, optical or electronic principles. Field Effect Transistor (FET) based biosensors gain popularity because of some distinct advantages like compact, fast measurement and portable instrumentation. Due to their small size, FET based biosensors are considered as potential candidates for point of care testing. In this paper, we have investigated the sensitivity of FET biosensors based on Evolutionary Algorithm for Bio-Medical (EABM) applications. We have also discussed major limitations in FET based biosensors like inability to detect neutral charged biomolecules and lesser sensitivity. Current mechanism in tunnel FET is based on band to band tunneling and this property is explored to enhance sensitivity of the device. In this paper, sensing is modeled with drain current, while as effect of variation in biomolecule concentration is based on changes in doping concentration and use high dielectric constant materials. The proposed EABM algorithm shows that the optimized value of drain current (sensitivity) is obtained with increase in doping concentrations or dielectric constant at the gate. The results also depict that the proposed EABM approach outperforms existing FET models.

Keywords


biosensor; evolutionary algorithm; tunnel FET

Full Text:

PDF

References


L. C. Clark, C. Lyons, “Electrode systems for continuous monitoring in cardiovascular surgery,” Ann. New York Acad. Sci., vol. 102, no. 1, pp. 29–45, 1962, doi: https://doi.org/10.1111/j.1749-6632.1962.tb13623.x.

P. Bergveld, “Short communications: Development of an ion-sensitive solid-state device for neurophysiological measurements,” IEEE Trans. Biomed. Eng., vol. BME-17, no. 1, pp. 70–71, 1970, doi: https://doi.org/10.1109/TBME.1970.4502688.

S. Caras, J. Janata, “Field effect transistor sensitive to penicillin,” Anal. Chem., vol. 52, no. 12, pp. 1935–1937, 1980, doi: https://doi.org/10.1021/ac50062a035.

M. J. Schöning, A. Poghossian, “Recent advances in biologically sensitive field-effect transistors (BioFETs),” Analyst, vol. 127, no. 9, pp. 1137–1151, 2002, doi: https://doi.org/10.1039/b204444g.

M. Fehr, D. W. Ehrhardt, S. Lalonde, W. B. Frommer, “Minimally invasive dynamic imaging of ions and metabolites in living cells,” Curr. Opin. Plant Biol., vol. 7, no. 3, pp. 345–351, 2004, doi: https://doi.org/10.1016/j.pbi.2004.03.015.

H.-J. Park et al., “Monitoring of C-reactive protein using ion sensitive field effect transistor biosensor,” Sens. Lett., vol. 8, no. 2, pp. 233–237, 2010, doi: https://doi.org/10.1166/sl.2010.1248.

A. B. Kharitonov, M. Zayats, A. Lichtenstein, E. Katz, I. Willner, “Enzyme monolayer-functionalized field-effect transistors for biosensor applications,” Sensors Actuators, B Chem., vol. 70, no. 1–3, pp. 222–231, 2000, doi: https://doi.org/10.1016/S0925-4005(00)00573-6.

C. P. Price, “Regular review: Point of care testing,” Br. Med. J., vol. 322, no. 7297, pp. 1285–1288, 2001, doi: https://doi.org/10.1136/bmj.322.7297.1285.

P. Bergveld, “Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years,” Sensors Actuators, B Chem., vol. 88, no. 1, pp. 1–20, 2003, doi: https://doi.org/10.1016/S0925-4005(02)00301-5.

W. Y. Choi, B.-G. Park, J. D. Lee, T.-J. K. Liu, “Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec,” IEEE Electron Device Lett., vol. 28, no. 8, pp. 743–745, 2007, doi: https://doi.org/10.1109/LED.2007.901273.

Y. Khatami, K. Banerjee, “Steep subthreshold slope n- and p-type Tunnel-FET devices for low-power and energy-efficient digital circuits,” IEEE Trans. Electron Devices, vol. 56, no. 11, pp. 2752–2761, 2009, doi: https://doi.org/10.1109/TED.2009.2030831.

R. Asra, M. Shrivastava, K. V. R. M. Murali, R. K. Pandey, H. Gossner, V. R. Rao, “A tunnel FET for VDD scaling below 0.6 v with a CMOS-comparable performance,” IEEE Trans. Electron Devices, vol. 58, no. 7, pp. 1855–1863, 2011, doi: https://doi.org/10.1109/TED.2011.2140322.

A. S. Verhulst, D. Leonelli, R. Rooyackers, G. Groeseneken, “Drain voltage dependent analytical model of tunnel field-effect transistors,” J. Appl. Phys., vol. 110, no. 2, p. 024510, 2011, doi: https://doi.org/10.1063/1.3609064.

M. G. Bardon, H. P. Neves, R. Puers, C. Van Hoof, “Pseudo-two-dimensional model for double-gate tunnel FETs considering the junctions depletion regions,” IEEE Trans. Electron Devices, vol. 57, no. 4, pp. 827–834, 2010, doi: https://doi.org/10.1109/TED.2010.2040661.

D. Sarkar, K. Banerjee, “Fundamental limitations of conventional-FET biosensors: Quantum-mechanical-tunneling to the rescue,” in Device Research Conference - Conference Digest, DRC, 2012, pp. 83–84, doi: https://doi.org/10.1109/DRC.2012.6256950.

R. Narang, K. V. S. Reddy, M. Saxena, R. S. Gupta, M. Gupta, “A dielectric-modulated tunnel-FET-based biosensor for label-free detection: Analytical modeling study and sensitivity analysis,” IEEE Trans. Electron Devices, vol. 59, no. 10, pp. 2809–2817, 2012, doi: https://doi.org/10.1109/TED.2012.2208115.

R. Narang, M. Saxena, R. S. Gupta, M. Gupta, “Dielectric modulated tunnel field-effect transistor-a biomolecule sensor,” IEEE Electron Device Lett., vol. 33, no. 2, pp. 266–268, 2012, doi: https://doi.org/10.1109/LED.2011.2174024.

Y. Pei-Wen et al., “A device design of an integrated CMOS poly-silicon biosensor-on-chip to enhance performance of biomolecular analytes in serum samples,” Biosens. Bioelectron., vol. 61, pp. 112–118, 2014, doi: https://doi.org/10.1016/j.bios.2014.05.010.

K. Kim et al., “Silicon nanowire biosensors for detection of cardiac troponin I (cTnI) with high sensitivity,” Biosens. Bioelectron., vol. 77, pp. 695–701, 2016, doi: https://doi.org/10.1016/j.bios.2015.10.008.

N. Aroonyadet et al., “Highly scalable, uniform, and sensitive biosensors based on top-down indium oxide nanoribbons and electronic enzyme-linked immunosorbent assay,” Nano Lett., vol. 15, no. 3, pp. 1943–1951, 2015, doi: https://doi.org/10.1021/nl5047889.

S. Cheng, S. Hideshima, S. Kuroiwa, T. Nakanishi, T. Osaka, “Label-free detection of tumor markers using field effect transistor (FET)-based biosensors for lung cancer diagnosis,” Sensors Actuators, B Chem., vol. 212, pp. 329–334, 2015, doi: https://doi.org/10.1016/j.snb.2015.02.038.

S. Hideshima, R. Sato, S. Inoue, S. Kuroiwa, T. Osaka, “Detection of tumor marker in blood serum using antibody-modified field effect transistor with optimized BSA blocking,” Sensors Actuators, B Chem., vol. 161, no. 1, pp. 146–150, 2012, doi: https://doi.org/10.1016/j.snb.2011.10.001.

Z. Bao et al., “Top-down nanofabrication of silicon nanoribbon field effect transistor (Si-NR FET) for carcinoembryonic antigen detection,” Int. J. Nanomedicine, vol. 12, pp. 4623–4631, 2017, doi: https://doi.org/10.2147/IJN.S135985.

S. Mansouri Majd, A. Salimi, “Ultrasensitive flexible FET-type aptasensor for CA 125 cancer marker detection based on carboxylated multiwalled carbon nanotubes immobilized onto reduced graphene oxide film,” Anal. Chim. Acta, vol. 1000, pp. 273–282, 2018, doi: https://doi.org/10.1016/j.aca.2017.11.008.

H.-C. Chen et al., “A sensitive and selective magnetic graphene composite-modified polycrystalline-silicon nanowire field-effect transistor for bladder cancer diagnosis,” Biosens. Bioelectron., vol. 66, pp. 198–207, 2015, doi: https://doi.org/10.1016/j.bios.2014.11.019.

Y. Cui, C. M. Lieber, “Functional nanoscale electronic devices assembled using silicon nanowire building blocks,” Science, vol. 291, no. 5505, pp. 851–853, 2001, doi: https://doi.org/10.1126/science.291.5505.851.

N. Yang, X. Chen, T. Ren, P. Zhang, D. Yang, “Carbon nanotube based biosensors,” Sensors Actuators, B Chem., vol. 207, no. PartA, pp. 690–715, 2015, doi: https://doi.org/10.1016/j.snb.2014.10.040.

H. R. Byon, H. C. Choi, “Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications,” J. Am. Chem. Soc., vol. 128, no. 7, pp. 2188–2189, 2006, doi: https://doi.org/10.1021/ja056897n.

X. Tang, S. Bansaruntip, N. Nakayama, E. Yenilmez, Y.-I. Chang, Q. Wang, “Carbon nanotube DNA sensor and sensing mechanism,” Nano Lett., vol. 6, no. 8, pp. 1632–1636, 2006, doi: https://doi.org/10.1021/nl060613v.

A. Star, J.-C. P. Gabriel, K. Bradley, G. Grüner, “Electronic detection of specific protein binding using nanotube FET devices,” Nano Lett., vol. 3, no. 4, pp. 459–463, 2003, doi: https://doi.org/10.1021/nl0340172.

C. Kataoka-Hamai, Y. Miyahara, “Label-free detection of DNA by field-effect devices,” IEEE Sensors J., vol. 11, no. 12, pp. 3153–3160, 2011, doi: https://doi.org/10.1109/JSEN.2011.2167143.

J. P. Colinge et al., “Nanowire transistors without junctions,” Nat. Nanotechnol., vol. 5, no. 3, pp. 225–229, 2010, doi: https://doi.org/10.1038/nnano.2010.15.

H. Im, X.-J. Huang, B. Gu, Y.-K. Choi, “A dielectric-modulated field-effect transistor for biosensing,” Nat. Nanotechnol., vol. 2, no. 7, pp. 430–434, 2007, doi: https://doi.org/10.1038/nnano.2007.180.

K. Boucart, A. M. Ionescu, “Length scaling of the Double Gate Tunnel FET with a high-K gate dielectric,” Solid-State Electron., vol. 51, no. 11–12, pp. 1500–1507, 2007, doi: https://doi.org/10.1016/j.sse.2007.09.014.

A. M. Ionescu, H. Riel, “Tunnel field-effect transistors as energy-efficient electronic switches,” Nature, vol. 479, no. 7373, pp. 329–337, 2011, doi: https://doi.org/10.1038/nature10679.

R. S. Kushwah, M. Chauhan, P. Shrivastava, S. Akashe, “Modelling and simulation of FinFET circuits with predictive technology models,” Radioelectron. Commun. Syst., vol. 57, no. 12, pp. 553–558, 2014, doi: https://doi.org/10.3103/S0735272714120048.

E. O. Kane, “Zener tunneling in semiconductors,” J. Phys. Chem. Solids, vol. 12, no. 2, pp. 181–188, 1960, doi: https://doi.org/10.1016/0022-3697(60)90035-4.







© Radioelectronics and Communications Systems, 2004–2020
When you copy an active link to the material is required
ISSN 1934-8061 (Online), ISSN 0735-2727 (Print)
tel./fax +38044 204-82-31, 204-90-41