Circuit theory analysis of aperture coupled patch antenna for wireless communication

Authors

  • Ashish Singh NMAM Institute of Technology, Nitte, India https://orcid.org/0000-0003-4099-2780
  • Mohammad Aneesh Veer Bahadur Singh Purvanchal University, Jaunpur, India
  • Kumari Kamakshi Institute of Management Studies, Ghaziabad, India
  • Jamshed Aslam Ansari University of Allahabad, India

DOI:

https://doi.org/10.3103/S0735272718040040

Keywords:

aperture coupled, dual band, microstrip patch antenna, SMA connector, circuit theory concept

Abstract

An analysis of dual band aperture coupled microstrip patch antenna is performed using modal expansion cavity model. The theoretical investigation of antenna characteristics such as return loss, VSWR and radiation pattern is represented. The influence of geometric parameters of the aperture coupled microstrip patch antenna, such as aperture length and width, height of the substrate, dielectric constant are also investigated. It is found that antenna resonates at two distinct modes i.e. 4.39 and 5.55 GHz for lower and upper resonance frequencies respectively. The bandwidth of the aperture coupled microstrip patch antenna at lower resonance frequency is 10.23% (theoretical) and 13.33% (simulated) whereas at upper resonance frequency, it is 5.69% (theoretical) and 3.59% (simulated). The frequency ratio obtained for upper to lower resonance frequencies for theoretical and simulated results are 1.5 and 1.37 respectively. The theoretical results are compared with IE3D simulation results along with reported experimental results and they are in close agreement.

Author Biographies

Ashish Singh, NMAM Institute of Technology, Nitte

Department of Electronics and Communication

Mohammad Aneesh, Veer Bahadur Singh Purvanchal University, Jaunpur

(2018) - University of Allahabad

Electonics and Communication

Jamshed Aslam Ansari, University of Allahabad

Electronics and Communication

References

HREBENCIUC, F.; STROIA, N.; MOGA, D.; BARABAS, Z. “A low cost approach to large smart shelf setups,” Advances in Electrical and Computer Engineering, v.11, n.4, p.117-122, 2011. DOI: http://doi.org/10.4316/AECE.2011.04019.

D’HOE, K.; VAN NIEUWENHUYSE, A.; OTTOY, G.; DE STRYCKER, L.; DE BACKER, L.; GOEMAERE, J.-P.; NAUWELAERS, B. “Influence of different types of metal plates on a high frequency RFID loop antenna: study and design.” Advances in Electrical and Computer Engineering, v.9, n.2, p.3-8, 2009. DOI: http://doi.org/10.4316/AECE.2009.02001.

POZAR, D.M. “Microstrip antenna aperture-coupled to a microstripline,” Electron. Lett., v.21, n.2, p.49-50, 1985. DOI: https://doi.org/10.1049/el:19850034.

SULLIVAN, P.; SCHAUBERT, D. “Analysis of an aperture coupled microstrip antenna,” IEEE Trans. Antennas Propag., v.34, n.8, p.977-984, Aug. 1986. DOI: https://doi.org/10.1109/TAP.1986.1143929.

HIMDI, M.; DANIEL, J.P.; TERRET, C. “Analysis of aperture-coupled microstrip antenna using cavity method,” Electron. Lett., v.25, n.6, p.391-392, Mar. 1989. DOI: https://doi.org/10.1049/el:19890269.

CROQ, F.; PAPIERNIK, A. “Large bandwidth aperture-coupled microstrip antenna,” Electron. Lett., v.26, n.16, p.1293-1294, Aug. 1990. DOI: https://doi.org/10.1049/el:19900832.

MEIGUNI, J.S.; KAMYAB, M.; HOSSEINBEIG, A. “Theory and experiment of spherical aperture-coupled antennas,” IEEE Trans. Antennas Propag., v.61, n.5, p.2397-2403, 2013. DOI: https://doi.org/10.1109/TAP.2013.2244836.

ITTIPIBOON, A.; OOSTLANDER, R.; ANTAR, Yahia M.M.; CUHACI, Michel. “A modal expansion method of analysis and measurement on aperture-coupled microstrip antenna,” IEEE Trans. Antennas Propag., v.39, n.11, p.1567-1573, Nov. 1991. DOI: https://doi.org/10.1109/8.102770.

BHATTACHARYYA, A.K.; ANTAR, Y.M.M.; ITTIPIBOON, A. “Full wave analysis of an aperture-coupled patch antenna,” Electron. Lett., v.27, n.2, p.153-155, Jan. 1991. DOI: https://doi.org/10.1049/el:19910099.

HIMDI, M.; LAFOND, O.; LAIGNIER, S.; DANIEL, J.P. “Extension of cavity method to analyse aperture coupled microstrip patch antenna with thick ground plane,” Electron. Lett., v.34, n.16, p.1534-1536, Aug 1998. DOI: https://doi.org/10.1049/el:19981128.

LAFOND, O.; HIMDI, M.; DANIEL, J.P.; “Extension of cavity method to analyze the aperture-coupled microstrip patch antenna with a tilted feeding line,” Microwave Opt. Technol. Lett., v.22, n.6, p.395-396, Sept 1999. DOI: http://doi.org/10.1002/(SICI)1098-2760(19990920)22:6::AID-MOP83.0.CO.

LIU, Zhang-Fa; KOOI, Pang-Shyan; LI, Le-Wei; LEONG, Mook-Seng; YEO, Tat-Soon. “A method for designing broad-band microstrip antennas in multilayered planar structures,” IEEE Trans. Antennas Propag., v.47, n.9, p.1416-1420, Sept 1999. DOI: https://doi.org/10.1109/8.793321.

KOSSEL, Marcel; BENEDICKTER, Hansruedi; BACHTOLD, Werner; KUNG, Roland; HANSEN, Jan. “Circularly polarized, aperture-coupled patch antennas for a 2.4 GHz RFID system,” Microwave J., Nov 1999. URI: http://www.microwavejournal.com/articles/2784.

KIM, J.P. “Optimum design of an aperture-coupled microstrip patch antenna,” Microwave Opt. Technol. Lett., v.39, n.1, p.75-78, Oct 2003. DOI: http://doi.org/10.1002/mop.11132.

CHAKRABORTY, S.; GUPTA, B.; PODDAR, D.R. “Development of closed form design formulae for aperture coupled microstrip patch antenna,” J. Sci. Industrial Res., v.64, n.7, p.482-486, July 2005. URI: http://nopr.niscair.res.in/handle/123456789/5129.

KUMAR, A.; KARTIKEYAN, M.V. “A circularly polarized stacked patch aperture coupled microstrip antenna for 2.6 GHz band,” Int. J. Infrared Millimeter Waves, v.28, n.1, p.13-23, 2007. DOI: https://doi.org/10.1007/s10762-006-9174-8.

ELHEFNAWY, M.; ISMAIL, W. “Analysis of aperture coupled microstrip antenna with circular polarization diversity,” Wireless Pers. Commun., v.56, n.2, p.301-314, Jan 2011. DOI: https://doi.org/10.1007/s11277-009-9833-x.

HUA, C.; WU, X.; WU, W. “A cavity-backed aperture-coupled microstrip patch antenna array with sum/difference beams,” J. Electromagn. Waves Appl., v.26, n.7, p.932-941, 2012. DOI: http://dx.doi.org/10.1080/09205071.2012.710381.

KIROV, Georgi S.; CHERVENKOV, Georgi T.; KALCHEV, Chavdar D. “Aperture coupled microstrip short backfire antenna,” J. Electrical Eng., v.63, n.2, p.75-80, 2012. DOI: https://doi.org/10.2478/v10187-012-0011-0.

SINGH, A.; SINGH, S. “Miniaturized wideband aperture coupled microstrip patch antenna by using inverted U-slot,” Int. J. Antennas Propag., v.2014, Article ID 306942, 2014. DOI: https://doi.org/10.1155/2014/306942.

MEIGUNI, J.S.; KAMYAB, M.; HOSSEINBEIG, A. “Theory and experiment of spherical aperture-coupled antennas,” IEEE Trans. Antennas Propag., v.61, n.5, p.2397-2403, May 2013. DOI: https://doi.org/10.1109/TAP.2013.2244836.

WANG, J.; FRALICH, R.; WU, C.; LITVA, J. “Multifunctional aperture coupled stack patch antenna,” Electron. Lett., v.26, n.25, p.2067-2068, Dec 1990. DOI: https://doi.org/10.1049/el:19901333.

GUPTA, K.C. Microstrip Lines and Slotlines, 2nd ed.NorwoodMA: Artech House, 1996.

GARG, R.; BHARTIA, P.; BAHL, I.; ITTIPIBOON, A. Microstrip Antenna Design Handbook. Boston, London: Artech House, 2001.

EDWARDS, T.C. Foundations for Microstrip Circuit Design. John Wiley, 1981.

BALANIS, C.A.Antenna Theory: Analysis and Design, 3nd ed. New York: Wiley, 2005.

TERMAN, F.E. Electronic and Radio Engineering. McGraw-Hill, 1955.

LIU, Zhang-Fa; KOOI, Pang-Shyan; LI, Le-Wei; LEONG, Mook-Seng; YEO, Tat-Soon. “A method for designing broad-band microstrip antennas in multilayered planar structures,” IEEE Trans. Antennas Propag., v.47, n.9, p.1416-1420, 1999. DOI: https://doi.org/10.1109/8.793321.

IE3D Simulation Software version 14.05. Zeland Software, Inc., CA, 2008.

Published

2018-04-19

Issue

Section

Research Articles