Non-linear effects in configurable antenna

Authors

DOI:

https://doi.org/10.3103/S0735272718030020

Keywords:

configurable antenna, electrodynamic structure switch, MEMS, voltage-capacity characteristics, signal distortion

Abstract

Current-technology different data transmission standards communication systems are commonly built with application of configurable antennas. Non-linear components including in radiating structure of antenna allows to expand the antenna functionability (operating frequency change, modification of the radiation pattern, change of polarization, input impedance, etc.), but also it can result in non-linear effects appear that distort antenna characteristics and transmitted data. In this connection in this paper there are considered actual problems such as methods of numerical analysis of non-linear effects in configurable antennas, specificities of switching components used in antennas, numerical research of influence of voltage-capacity characteristics of radiating structure switch and excitation power on antenna characteristics. Carried out estimated researches allow to obtain general representations and predict nonlinear distortions in configurable antennas caused by used different types switches.

References

LUCHANINOV, A.I.; GAVVA, D.S.; SHARAPOVA, E.V. Non-Linear Effects in Elements of Electrodynamic Microstrip Devices on a Basis of High-Temperature Superconductors [in Russian]. Kharkiv: Kollegium, 2015.

SIDOROV, Y.G.; GAVVA, D.S. “Non-linear properties of configurable antennas. Part 1. Simulation of configurable two-frequency antenna,” Eastern-European J. Enterprise Technol., v.3, n.3, p.52-56, 2009. URI: http://journals.uran.ua/eejet/article/view/20288.

SIDOROV, Y.G. “Mathematic model of configurable antennas taking into account non-linear properties of control elements,” Radiotekhnika (Kharkiv), n.155, p.274-281, 2008.

LUCHANINOV, A.I.; GAVVA, D.S.; KRIKUN, Y.V.; SKORIKOVA, Y.V. “Structural synthesis of reconfigured antennas,” Eastern-European J. Enterprise Technol., v.4, n.9, p.28-34, 2010. URI: http://journals.uran.ua/eejet/article/view/3037.

ANAGNOSTOU, D.E. “Technological advances in reconfigurable and autonomous antenna systems,” Proc. of 8th European Conf. on Antennas and Propagation, EuCAP 2014, 6-11 Apr., 2014, Hague, Netherlands. IEEE, 2014, p.1727-1730. DOI: http://doi.org/10.1109/EuCAP.2014.6902125.

JOKIC, I.; FRANTLOVIC, M.; DJURIC, Z. “RF MEMS and NEMS components and adsorption-desorption induced phase noise,” Proc. of 29th Int. Conf. on Microelectronics, MIEL-2014, 12-14 May 2014, Belgrade, Serbia. IEEE, 2014, p.117-124. DOI: http://doi.org/10.1109/MIEL.2014.6842100.

ATTAR, S.S.; SETOODEH, Sormeh; MANSOUR, Raafat R.; GUPTA, Deepnarayan. “Low-temperature superconducting DC-contact RF MEMS switch for cryogenic reconfigurable RF front-ends,” IEEE Trans. Microwave Theory Tech., v.62, n.7, p.1437-1447, 2014. DOI: http://doi.org/10.1109/TMTT.2014.2327205.

KUKUSHKIN, A.E.; BICHURIN, M.I.; TATARENKO, A.S.; SEMENOV, G.A. “MEMS technology application for designing of microwave variable attenuators,” Bulletin of Novgorod State University, n.6, p.77-81, 2015. URI: http://www.novsu.ru/vestnik/vestnik/i.78099/?article=1202163.

DUSSOPT, L.; REBEIZ, G.M. “Intermodulation distortion and power handling in RF MEMS switches, varactors, and tunable filters,” IEEE Trans. Microwave Theory Tech., v.51, n.4, p.1247-1256, 2003. DOI: http://doi.org/10.1109/TMTT.2003.809650.

REBEIZ, Gabriel M. RF MEMS Theory, Design, and Technology.Hoboken,New Jersey: John Wiley & Sons, Inc., 2003. ISBN: 978-0-471-20169-4.

GAVVA, D.S. “Representation of surface impedance for simulation of electrodynamic devices, realized on a basis of HTSC materials,” Radiotekhnika (Kharkiv), n.182, p.121-129, 2015.

LUCHANINOV, A.I.; GAVVA, D.S.; KRIKUN, Y.V.; VISHNYAKOVA, Y.V. “The results of investigation of non-linear effects in microstrip lines with HTSC,” Eastern-European J. Enterprise Technol., v.2, n.9, p.4-8, 2012. URI: http://journals.uran.ua/eejet/article/view/3784.

CHO, S.; LEE, S. “Intermodulation measurements in superconducting meander lines,” IEEE Trans. Applied Superconductivity, v.9, n.2, p.3998-4001, 1999. DOI: http://doi.org/10.1109/77.783904.

VÄHÄ-HEIKKILÄ, Tauno. “MEMS tuning and matching circuits, and millimeter wave on-wafer measurements,” Dissertation for the degree of Doctor of Science in Technology. VTT Technical Research Centre ofFinland, 2006. ISBN 951-38-6705-6.

ARATHY, U.S.; RESMI, R. “Analysis of pull-in voltage of MEMS switches based on material properties and structural parameters,” Proc. of Int. Conf. on Control, Instrumentation, Communication and Computational Technologies, ICCICCT, 18-19 Dec. 2015, Kumaracoil, India. IEEE, 2015, p.57-61. DOI: http://doi.org/10.1109/ICCICCT.2015.7475249.

BHATASANA, Piyush; PUJARA, Dhaval; BERA, S.C. “Movable parallel plate RF MEMS switch with wide frequency response,” Proc. of Applied Electromagnetics Conf., AEMC, 18-21 Dec. 2015, Guwahati, India. IEEE, 2015, p.1-2. DOI: http://doi.org/10.1109/AEMC.2015.7509162.

GIRBAU, David; OTEGI, Nerea; PRADELL, Lluís; LÁZARO, Antonio. “Generation of third and higher-order intermodulation products in MEMS capacitors, and their effects,” Proc. of 13th EGAAS Symp., 3-4 Oct. 2005, Paris, France. IEEE, 2005, p.593-596. DOI: http://doi.org/10.1109/EUMC.2005.1610245.

HERFST, R.W.; HUIZING, H.G.A.; STEENEKEN, P.G.; SCHMITZ, J. “Characterization of dielectric charging in RF MEMS capacitive switches,” Proc. of IEEE Int. Conf. on Microelectronic Test Structures, 6-9 Mar. 2006, Austin, TX, USA. IEEE, 2006, p.133-136. DOI: http://doi.org/10.1109/ICMTS.2006.1614290.

PEROULIS, D.; PACHECO, S.; SARABANDI, K.; KATEHI, P.B. “MEMS devices for high isolation switching and tunable filtering,” IEEE MTT-S Int. Microwave Symp. Dig., 11-16 Jun. 2000, Boston, MA, USA. IEEE, 2000, p.1217-1220. DOI: http://doi.org/10.1109/MWSYM.2000.863578.

SHIFRIN, Y.S.; LUCHANINOV, A.I.; GAVVA, D.S.; ZHURBENKO, V.V. “Excitation of wire structures with nonlinear characteristics of the surface impedance,” Proc. of 5th Int. Conf. on Antenna Theory and Techniques, 24-27 May 2005, Kyiv, Ukraine. IEEE, 2005, p.156-159. DOI: http://doi.org/10.1109/ICATT.2005.1496909.

GAVVA, D.S. “Characteristics of arbitrarily configurated thin wire antennas with the nonlinear surface impedance,” Proc. of 4th Int. Conf. on Antenna Theory and Techniques, 9-12 Sept. 2003, Sevastopol, Ukraine. IEEE, 2003, v.2, p.852-855. DOI: http://doi.org/10.1109/ICATT.2003.1238887.

GAVVA, D.S.; LUCHANINOV, A.I.; OMAROV, M.A. “Characteristics of electrodynamic structures excited with different type sources,” Radiotekhnika (Kharkiv), n.134, p.256-260, 2003.

LUCHANINOV, A.I.; GAVVA, D.S.; UAID, S.P. “Vibrators with non-uniform distribution of surface impedance nonlinearity,” Radiotekhnika (Kharkiv), n.177, p.202-222, 2014.

MANSOUR, R.R.; BAKRI-KASSEM, M.; DANESHMAND, M.; MESSIHA, N. “RF MEMS devices,” Proc. of Int. Conf. on MEMS, NANO and Smart Systems, ICMENS'03, 23 Jul. 2003, Banff, Alberta, Canada. IEEE, 2003, p.103-107. DOI: http://doi.org/10.1109/ICMENS.2003.1221974.

DEY, Sukomal; KOUL, Shiban K. “Reliability analysis of Ku-band 5-bit phase shifters using MEMS SP4T and SPDT switches,” IEEE Trans. Microwave Theory Tech., v.63, n.12, p.3997-4012, Dec. 2015. DOI: http://doi.org/10.1109/TMTT.2015.2491938.

SOUCHON, F.; CHARVET, PL.; MAEDER-PACHURKA, C.; AUDOIN, M. “Dielectric charging sensitivity on MEMS switches,” Proc. of Int. Conf. on Solid-State Sensors, Actuators and Microsystems, 10-14 Jun. 2007, Lyon, France. IEEE, 2007, p.363-366. DOI: http://doi.org/10.1109/SENSOR.2007.4300143.

ORLOV, A.V.; KUKUSHKIN, A.E.; AFINOGENOV, I.A. “Application of MEMS technology for designing electrostatic relays,” Bulletin of Novgorod State University, v.1, n.75, p.124-128, 2013. URI: http://www.novsu.ru/file/1092668.

Published

2018-03-30

Issue

Section

Research Articles