Complex effective dielectric permittivity of micromechanically tunable microstrip lines

Authors

DOI:

https://doi.org/10.3103/S0735272718020048

Keywords:

microstrip line, micromechanical tuning, effective dielectric permittivity, loss

Abstract

It is considered an influence of physical-topological parameters of controlled microstrip lines where characteristics modification is achieved by signal electrode movement over the substrate on effective dielectric permittivity and electromagnetic energy loss in the line expressed in form of complex permittivity. There are stated the ways of increase of sensitivity of effective dielectric permittivity modification to signal electrode shift and loss decrease. There are determined ultimate characteristics of tuning and loss. There are represented calculations of transfer factor effective permittivity corresponding to experimental results. These results can be used for development of controlled resonant elements and phase shifters with application of electrically tunable micromovement devices, such as piezo- and electrostrictive actuators or microelectromechanic systems. Due to application of invariant relations of physical-topological parameters represented calculations are suitable for estimation of tuning factors and loss of devices with micromechanical control in a wide range of operating frequency with application of wide range of materials.

References

KURUDERE, S.; ERTURK, V.B. Novel microstrip fed mechanically tunable combline cavity filter. IEEE Microwave and Wireless Components Lett., v.23, n.11, p.578-580, Nov. 2013. DOI: https://doi.org/10.1109/LMWC.2013.2281432.

FOULADI, S.; HUANG, F.; YAN, W.D.; MANSOUR, R.R. High-Q narrowband tunable combline bandpass filters using MEMS capacitor banks and piezomotors. IEEE Trans. Microwave Theory Tech., v.61, n.1, p.393-402, Jan. 2013. DOI: https://doi.org/10.1109/TMTT.2012.2226601.

GILLATT, Brendan T.W.; D’AURIA, Mario; OTTER, William J.; RIDLER, N.M.; LUCYSZYN, S. 3-D printed variable phase shifter. IEEE Microwave and Wireless Components Lett., v.26, n.10, p.822-824, 2016. DOI: https://doi.org/10.1109/LMWC.2016.2604879.

ROMANO, P.; ARAROMI, O.; ROSSET, S.; PERRUISSEAU-CARRIER, J.; SHEA, H.; MOSIG, J.R.; RAMON, Juan. Low-loss millimeter-wave phase shifters based on mechanical reconfiguration. Proc. of Progress In Electromagnetics Research Symp., PIERS, 6-9 Jul. 2015, Prague. Prague, 2015. URI: https://infoscience.epfl.ch/record/210386.

BOUYGE, D.; MARDIVIRIN, D.; BONACHE, J.; CRUNTEANU, Aurelian; POTHIER, Arnaud; DURAN-SINDREU, Miguel; BLONDY, Pierre; MARTIN, Ferran. Split ring resonators (SRRs) based on micro-electro-mechanical deflectable cantilever-type rings: application to tunable stopband filters. IEEE Microwave and Wireless Components Lett., v.21, n.5, p.243-245, 2011. DOI: https://doi.org/10.1109/LMWC.2011.2124450.

POPLAVKO, Y.; PROKOPENKO, Y.; PASHKOV, V.; MOLCHANOV, V.; GOLUBEVA, I.; KAZMIRENKO, V.; SMIGIN, D. Low loss microwave piezo-tunable devices. Proc. of 36th European Microwave Conf., 10-15 Sept. 2006, Manchester, UK. IEEE, 2006, p.657-660. DOI: https://doi.org/10.1109/EUMC.2006.281496.

NI, Jia; HONG, Jiasheng. Varactor-tuned microstrip bandpass filters with different passband characteristics. IET Microwaves, Antennas & Propag., v.8, n.6, p.415-422, 2014. DOI: https://doi.org/10.1049/iet-map.2013.0474.

KARIM, M.F.; GUO, Y.-X.; CHEN, Z.N.; ONG, L.C. Miniaturized reconfigurable and switchable filter from UWB to 2.4 GHz WLAN using PIN diodes. IEEE MTT-S Int. Microwave Symp. Dig., 7-12 Jun. 2009, Boston, MA, USA. IEEE, 2009, p.509-512. DOI: https://doi.org/10.1109/MWSYM.2009.5165745.

JIN, Zhang; ORTIZ, S.; MORTAZAWI, A. Design and performance of a new digital phase shifter at X-band. IEEE Microwave Wireless Components Lett., v.14, n.9, p.428-430, Sept. 2004. DOI: https://doi.org/10.1109/LMWC.2004.832049.

YUN, T.-Y.; CHANG, K. Analysis and optimization of a phase shifter controlled by a piezoelectric transducer. IEEE Trans. Microwave Theory Tech., v.50, n.1, p.105-111, 2002. DOI: https://doi.org/10.1109/22.981254.

GOLUBEVA, I.; KAZMIRENKO, V.; SERGIENKO, P.; PROKOPENKO, Y. Effective permittivity in tunable microstrip and coplanar lines. Proc. of XXXII Int. Sci. Conf. on Electronics and Nanotechnology, ELNANO, 10-12 Apr 2012, Kyiv, Ukraine. Kyiv, 2012, p.69-70. URI: http://www.journals.kpi.ua/publications/text/69_70_2012.pdf.

PROKOPENKO, Y.V. Controllability range of dielectric inhomogeneity located between the metal planes. Tehnologiya i Konstruirovanie v Elektronnoi Apparature, n.6, p.16-20, 2012. URI: http://www.tkea.com.ua/tkea/2012/6_2012/st_04.htm.

GUPTA, K.C. Microstrip Lines and Slotlines, 2nd ed. Artech House, 1996.

SERGIENKO, P.Y.; KAZMIRENKO, V.A.; CHERNOV, A.S.; PROKOPENKO, Y.V. Q-factor of tuned microstrip resonator. Radioelectron. Commun. Syst., v.59, n.2, p.89-95, 2016. DOI: https://doi.org/10.3103/S0735272716020060.

SERGIENKO, P.; GOLUBEVA, I.; PROKOPENKO, Y. Loss in tunable microstrip lines. Proc. of IEEE 34th Int. Conf. on Electronics and Nanotechnology, ELNANO, 15-18 Apr. 2014, Kyiv, Ukraine. IEEE, 2014, p.97-100. DOI: https://doi.org/10.1109/ELNANO.2014.6873972.

AKHIEZER, A.I.; AKHIEZER, I.A. Electromagnetism and Electromagnetic Waves [in Russian]. Moscow: Vyssh. Shkola, 1985.

Published

2018-02-21

Issue

Section

Research Articles