Open Access Open Access  Restricted Access Subscription Access
Radiating element ITMLA

Design of a negative conductance dielectric resonator oscillator for X-band applications

Seyi Stephen Olokede, Syasana Basyirah Binti Mohammed Zaki, Nor Muzlifah Mahyuddin, Mohd Fadzil Ain, Zainal Arifin Ahmad


An X-band tunable microwave low-phase noise planar oscillator employing a novel-fed dielectric resonator (DR) with a single transistor has been investigated and realized. A ZrSnTi oxide composite ceramic-based DR with dielectric permittivity of 95 enclosed in a metallic cavity with an unloaded Q factor of 5,000 at 10 GHz is proposed. The resonant frequency affinity with respect to geometric parameters is established by using the compensation technique based on dual negative conductance feedback, the outputs of which are combined via a Wilkinson power divider (WPD). The feedback parallel-coupled DR oscillator is incorporated into a laminate microwave board using the photolithographic technique. The oscillator includes a pseudomorphic low noise amplifier based on a high-electron-mobility transistor. Hence, the proposed oscillator with mechanic tuning is measured, and the results show that DR resonates at TE01d mode with frequency of 10 GHz. The measured phase noise of the oscillator is –81.03 dBc/Hz at a 100 kHz offset.


dielectric resonator oscillator; feedback; negative conductance; parallel coupled; phase noise

Full Text:



RAZAVI, B. Challenges in portable RF transceiver design. IEEE Circuits Devices Mag., v.12, n.5, p.12-25, Sept. 1996. DOI:

GED 2013. Dielectric Resonator Oscillator (DRO Information). General Electronic Devices. URI:

WAN, J. Design of a 5.305 GHz dielectric resonator oscillator with simulation and optimization. J. Electronic Science Technol. China, v.6, n.3, p.342-345, 2008. URI:

YAN, Guoguang. The design of the Ku band dielectric resonator oscillator. Proc. of Int. Conf. on Electronic Packaging Technology & High Density Packaging, ICEPT-HDP, 28-31 Jul. 2008, Shanghai, China. IEEE, 2008, p.1-3. DOI:

SUN, B.; WU, Y.; LUO, B.; DU, G. Design of 5.8 GHz dielectric resonator oscillator applied in electronic toll collection. Proc. of 5 Int. Conf. on Wireless Communications, Networking and Mobile Computing, WiCom, 24-26 Sept. 2009, Beijing, China. IEEE, 2009, p.1-3. DOI:

TANAKA, T.; AIKAWA, M. A K-band push-push oscillator using dielectric resonator. Proc. of 13 Int. Symp. on Antenna Technology and Applied Electromagnetics and the Canadian Radio Science Meeting, ANTEM/URSI, 15-18 Feb. 2009, Toronto, ON, Canada. IEEE, 2009, p.1-4. DOI:

DU, Y.; TANG, Z.-X.; ZHANG, B.; SU, P. K-band harmonic dielectric resonator oscillator using parallel feedback structure. PIER Lett., v.34, p.83-90, 2012. DOI:

LIU, Han-Li; WANG, Lang; LIN, Guo-Wei. Design of a K-band push-push dielectric resonator oscillator. Proc. of Int. Workshop on Electromagnetics; Applications and Student Innovation, iWEM, 6-9 Aug. 2012, Chengdu, Sichuan, China. IEEE, 2012, p.1-2. DOI:

XIA, Q.; TANG, Z.; ZHANG, B. Design of a 17.4GHz push-push dielectric resonator oscillator. Proc. of Int. Conf. on Microwave and Millimeter Wave Technology, ICMMT, 8-11 May 2010, Chengdu, China. IEEE, 2010, p.532-535. DOI:

SU, P.; TANG, Z.-X.; ZHANG, B. Push-push dielectric resonator oscillator using substrate integrated waveguide power combiner. PIER Lett., v.30, p.105-113, 2012. DOI:

FUSCO, V.F.; DEARN, A. Dielectric Resonator Oscillators. Wiley Encyclopedia of Electrical and Electronics Engineering, 1999.

SINNESBICHLER, F.X.; HAUTZ, B.; OLBRICH, G.R. A Si/SiGe HBT dielectric resonator push-push oscillator at 58 GHz. IEEE Microwave Guided Wave Lett., v.10, n.4, p.145-147, Apr. 2000. DOI:

ISHIHARA, O.; MORI, T.; SAWANO, H.; NAKATANI, M. A highly stabilized GaAs FET oscillator using a dielectric resonator feedback circuit in 9-14 GHz. IEEE Trans. Microwave Theory Tech., v.28, n.8, p.817-824, Aug 1980. DOI:

ABE, H.; TAKAYAMA, Y.; HIGASHISAKA, A.; TAKAMIZAWA, H. A highly stabilized low-noise GaAs FET integrated oscillator with a dielectric resonator in the C band. IEEE Trans. Microwave Theory Tech., v.26, n.3, p.156-162, Mar 1978. DOI:

OGAWA, K.; IKEDA, H.; ISHIZAKI, T.; HASHIMOTO, K.; OTA, Y. 25 GHz dielectric resonator oscillator using an AlGaAs/GaAs HBT. Electron. Lett., v.26, n.18, p.1514-1516, 30 Aug. 1990. DOI:

LLOPIS, O.; DIENOT, J.-M.; VERDIER, J.; PLANA, R.; GAYRAL, M.; GRAFFEUIL, J. Analytic investigation of frequency sensitivity in microwave oscillators: Application to the computation of phase noise in a dielectric resonator oscillator. Annales Des Télécommunications, v.51, n.3-4, p.121-129, 1996. DOI:

HERCZFELD, P.R.; DARYOOSH, A.; D’ASCENZO, C.; CONTARINO, M.; ROSEN, A. Optically tuned and FM modulated X-band dielectric resonator oscillator. Proc. of 14th European Microwave Conf., 10-13 Sept. 1984, Liege, Belgium. IEEE, 1984, p.268-273. DOI:

MAKINO, T.; HASHIMA, A. A highly stabilized MIC Gunn oscillator using a dielectric resonator. IEEE Trans. Microwave Theory Tech., v.27, n.7, p.633-638, Jul. 1979. DOI:

MIZAN, M.A.; STURZEBECHER, D.; HIGGINS, T.; PAOLELLA, A. An X-band, high power dielectric resonator oscillator for future military systems. IEEE Trans. Ultrasonics, Ferroelectrics, Frequency Control, v.40, n.5, p.483-487, Sept. 1993. DOI:

KISHK, A.A.; GLISSON, A.W.; JUNKER, G.P. Bandwidth enhancement for split cylindrical dielectric resonator antennas. PIER, v.33, p.97-118, 2001. DOI:

PETOSA, A. Dielectric Resonator Antenna Handbook. Artech House, 2007.

SHEN, T.; ZAKI, K.A.; WANG, C. Tunable dielectric resonators with dielectric tuning disks. IEEE Trans. Microwave Theory Tech., v.48, n.12, p.2439-2445, Dec. 2000. DOI:

SHEN, T.; ZAKI, K.A.; WANG, C.; DERISO, J. Tunable dielectric resonators with dielectric tuning disks in cylindrical enclosures. Proc. of IEEE MTT-S Int. Microwave Symp. Dig., 11-16 June 2000, Boston, MA, USA. IEEE, 2000, v.3, p.1441-1444. DOI:

VENDELIN, G.D.; PAVIO, A.M.; ROHDE, U.L. Microwave Circuit Design Using Linear and Nonlinear Techniques. New York: Wiley, 1990.

VENDELIN, G.D.; PAVIO, A.M.; ROHDE, U.L. Microwave Circuit Design Using Linear and Nonlinear Techniques, 2nd ed. Hoboken, New Jersey: John Wiley & Sons, Inc., 2005. DOI:

BAHL, I.J.; BHARTIA, P. Microwave Solid State Circuit Design. New York: Wiley, 1988.



  • There are currently no refbacks.

© Radioelectronics and Communications Systems, 2004–2017
When you copy an active link to the material is required
ISSN 1934-8061 (Online), ISSN 0735-2727 (Print)
tel./fax +38044 204-82-31, 204-90-41