Concepts of the physical level of the fifth generation communications systems

Authors

  • D. A. Pokamestov Tomsk State University of Control Systems and Radioelectronics, Russian Federation
  • Y. V. Kryukov Tomsk State University of Control Systems and Radioelectronics, Russian Federation
  • E. V. Rogozhnikov Tomsk State University of Control Systems and Radioelectronics, Russian Federation
  • R. R. Abenov Tomsk State University of Control Systems and Radioelectronics, Russian Federation
  • A. Y. Demidov Tomsk State University of Control Systems and Radioelectronics, Russian Federation

DOI:

https://doi.org/10.3103/S0735272717070019

Keywords:

FBMC, SCMA, 5G, NOMA, SIC, fifth generation communication system, full duplex, analog compensation, digital compensation, comb filter bank, filter bank multicarrier, non-orthogonal multiple access, serial interference cancellation, sparse code multiple access

Abstract

The most promising technologies of signal forming and multiple access have been considered from the viewpoint of bandwidth-time resource usage. They include the full duplex technology, subcarrier forming method using a comb filter bank, the non-orthogonal multiple access method, and the sparse code multiple access method. The main existing implementation schemes of full duplex communication based on the analog and digital proper transmitter in the reception channel are described. The filtering multifrequency signal system using a bank of comb filters is considered. The spectrum of such signal is shown to have a much weaker out-of-band radiation as compared to the existing subcarrier forming techniques. The non-orthogonal multiple access method and the sparse code multiple access method are investigated, and relationships of the bit error rates as a function of the signal-to-noise ratio for communications systems based on these methods are presented. It has been shown that the multiple access methods under consideration are more effective in the bandwidth-time resource usage as compared to the existing technologies.

References

MARSCH, P.; DA SILVA, I.; EL AYOUBI, S. E.; BOLDI, O.M.; ET AL. 5G RAN Architecture and Functional Design, METIS White Paper, 2016.

5G Initiative Team, NGMN 5G White Paper, 2015.

5G PPP Architecture Working Group. View on 5G Architecture, White Paper, 2016.

5G Network Architecture Design, IMT-2020 White Paper, 2016.

TIKHVINSKII, V.O.; BOCHECHKA, G.S. Conceptual aspects of 5G creation. Elektrosvyaz, n.10, p.29-34, 2013. URL: http://w.raenitt.ru/publication/5G_projects_elsv.pdf.

JAIN, M.; CHOI, JUNG IL; KIM, TAEMIN; BHARADIA, DINESH; SETH, SIDDHARTH; SRINIVASAN, KANNAN; LEVIS, PHILIP; KATTI, SACHIN; SINHA, PRASUN. Practical, real-time, full duplex wireless. Proc. of 17th Annual Int. Conf. on Mobile Computing and Networking, ACM, 2011, p.301-312. DOI: http://doi.org/10.1145/2030613.2030647.

CHOI, JUNG IL; JAIN, MAYANK; SRINIVASAN, KANNAN; LEVIS, PHIL; KATTI, SACHIN. Achieving single channel, full duplex wireless communication. Proc. of Sixteenth Annual Int. Conf. on Mobile Computing and Networking, ACM, 2010, p.1-12. DOI: http://doi.org/10.1145/1859995.1859997.

DUARTE, M.; DICK, C.; SABHARWAL, A. Experiment-driven characterization of full-duplex wireless systems. IEEE Trans. Wireless Commun., v.11, n.12, p.4296-4307, 2012. DOI: http://doi.org/10.1109/TWC.2012.102612.111278.

ROGOZHNIKOV, E.V.; KOLDOMOV, A.S.; VOROBYOV, V.A. Full duplex wireless communication system, analog cancellation: Review of methods and experimental research. Proc. of XII Int. Siberian Conf. on Control and Communications, SIBCON-2016, 12-14 May 2016, Moscow, Russia. IEEE, 2016, p.1-5. DOI: http://doi.org/10.1109/SIBCON.2016.7491777.

BHARADIA, DINESH; MCMILIN, EMILY; KATTI, SACHIN. Full duplex radios. Proc. of Conf. on SIGCOMM, 12-16 Aug. 2013, Hong Kong, China. 2013, v.43, n.4, p.375-386. DOI: http://doi.org/10.1145/2534169.2486033.

ABENOV, R.R.; VERSHININ, A.S.; VOROSHILIN, E.P.; ROGOZHNIKOV, E.V. Research of equalization methods for the communication systems using OFDM signals. Vestnik SibGUTI, n.1, p.50-56, 2013. URL: https://elibrary.ru/item.asp?id=19422242.

KAPLUN, D.; KANATOV, I.; AZARENKOV, L. Bank of digital filters. Komponenty i Tekhnologii, n.10, p.156, 2007. URL: http://kit-e.ru/articles/dsp/2007_10_156.php.

BELLANGER, M.; ET AL. FBMC Physical Layer: A Primer. PHYDYAS, Jan. 2010.

5G Waveform Candidate Selection. URL: http://www.5gnow.eu/wp-content/uploads/2015/04/5GNOW_D3.1_v1.1_final.pdf.

PREMNATH, S.N.; WASDEN, D.; KASERA, S.K.; PATWARI, N.; FARHANG-BOROUJENY, B. Beyond OFDM: Best-effort dynamic spectrum access using filterbank multicarrier. IEEE/ACM Trans. Networking, v.21, n.3, June 2013. DOI: http://doi.org/10.1109/TNET.2012.2213344.

BALASHOVA, K.V.; LOBANOV, N.A.; DOLGIKH, D.A. Filter bank multicarrier modulator. Proc. of Vseros. Nauch.-Tekhn. Conf. Studentov, Aspirantov i Molodykh Uchenykh on Nauchnaya sessiya TUSUR-2012, 16-18 May 2012, Tomsk, Russia. Tomsk 2012, Part 2, p.75-78.

FARHANG-BOROUJENY, B. OFDM versus filter bank multicarrier. IEEE Signal Processing Magazine, v.28, n.3, p.92-112, 2011. DOI: http://doi.org/10.1109/MSP.2011.940267.

MARCUS, M.J. 5G and ‘IMT for 2020 and beyond’ [Spectrum Policy and Regulatory Issues]. IEEE Wireless Commun., v.22, n.4, p.2-3, 2015. DOI: http://doi.org/10.1109/MWC.2015.7224717.

SOLDANI, D.; MANZALINI, A. Horizon 2020 and beyond: on the 5G operating system for a true digital society. IEEE Vehicular Technology Magazine, v.10, n.1, p.32-42, 2015. DOI: http://doi.org/10.1109/MVT.2014.2380581.

BENJEBBOUR, ANASS; SAITO, KEISUKE; LI, ANXIN; KISHIYAMA, YOSHIHISA; NAKAMURA, TAKEHIRO. Non-orthogonal multiple access (NOMA): Concept, performance evaluation and experimental trials. Proc. of Int. Conf. on Wireless Networks and Mobile Communications, WINCOM, 20-23 Oct. 2015, Marrakech, Morocco. IEEE, 2015, p.1-6. DOI: http://doi.org/10.1109/WINCOM.2015.7381343.

ZHANG, YI; WANG, HUI-MING; YANG, QIAN; DING, ZHIGUO. Secrecy sum rate maximization in non-orthogonal multiple access. IEEE Commun. Lett., v.20, n.5, p.930-933, 2016. DOI: http://doi.org/10.1109/LCOMM.2016.2539162.

DAI, LINGLONG; WANG, BICHAI; YUAN, YIFEI; HAN, SHUANGFENG; I, CHIH-LIN; WANG, ZHAOCHENG. Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends. IEEE Commun. Magazine, v.53, n.9, p.74-81, 2015. DOI: http://doi.org/10.1109/MCOM.2015.7263349.

KRYUKOV, Y.V.; DEMIDOV, A.Y.; POKAMESTOV, D.A. Power calculation algorithm in non-orthogonal multiple access NOMA. Proc. TUSUR, v.19, n.4, p.91-94, 2016. URL: https://journal.tusur.ru/en/archive/4-2016/power-calculation-algorithm-in-non-orthogonal-multiple-access-noma.

3GPP TS 36.211, version 9.1.0, 3rd Generation Partnership Project, Technical Specification Group Radio Access Network, Evolved Universal Terrestrial Radio Access (E-UTRA), Physical Channels and Modulation, 2010.

NIKOPOUR, H.; BALIGH, H. Sparse code multiple access. Proc. of 24th Int. Symp. on Personal Indoor and Mobile Radio Communications, PIMRC, 8-11 Sept. 2013, London, UK. IEEE, 2013, p.332-336. DOI: http://doi.org/10.1109/PIMRC.2013.6666156.

MU, HANG; MA, ZHENG; ALHAJI, MAHAMUDA; FAN, PINGZHI; CHEN, DAGENG. A fixed low complexity message pass algorithm detector for up-link SCMA system. IEEE Wireless Commun. Lett., v.4, n.6, p.585-588, 2015. DOI: http://doi.org/10.1109/LWC.2015.2469668.

POKAMESTOV, D.A.; DEMIDOV, A.Y.; KRYUKOV, Y.V.; ROGOZHNIKOV, E.V.; ABENOV, R.R. Signal formation and processing for sparse code multiple access. Elektrosvyaz, n.10, p.56-61, 2016.

POKAMESTOV, D.A.; DEMIDOV, A.Y.; KRYUKOV, Y.V. Forming matrix of sparse code multiple access. Proc. TUSUR, v.19, n.3, p.65-69, 2016. URL: https://journal.tusur.ru/en/archive/3-2016/forming-matrix-of-sparse-code-multiple-access.

Published

2017-07-14

Issue

Section

Review Articles