Channel capacity with suboptimal adaptation technique over generalized-K fading using marginal moment generating function

Authors

  • Aakanksha Sharma Jaypee University of Information Technology, Waknaghat, India
  • Vivek K. Dwivedi Jaypee Institute of Information Technology, Noida, India
  • Ghanshyam Singh Jaypee University of Information Technology, Waknaghat, India https://orcid.org/0000-0002-5159-3286

DOI:

https://doi.org/10.3103/S073527271608001X

Keywords:

generalized-K fading, adaptation technique, channel inversion with fixed rate, truncated channel inversion with fixed rate, marginal moment generating function

Abstract

In this paper we have computed the channel capacity for suboptimal adaptation technique over the generalized-K fading environment. The analytical expression for channel capacity in case of the truncated channel inversion with fixed rate (CTCIFR) has been exploited in terms of marginal moment generating function (MMGF) and its performance is evaluated over the generalized-K faded environment. The MMGF based approach for the computation of channel capacity has been validated with the reported literature for channel capacity in case of the channel inversion with fixed rate using the suboptimal adaptive technique.

Author Biography

Ghanshyam Singh, Jaypee University of Information Technology, Waknaghat

Electronics and Communication Engineering

References

STUBER, G.L. Principles of Mobile Communication. Norwell, MA : Kluwer, 2001.

TELLAMBURA, C.; BHARGAVA, V.K. Outage probability analysis for cellular mobile radio systems subject to Nakagami fading and shadowing. IEICE Trans. Commun., Oct. 1995, v.E78-B, n.10, p.1416-1423.

ABDI, A.; KAVEH, M. K distribution: An approximate substitute for Rayleigh-lognormal distribution in fading-shadowing wireless channels. Electron. Lett., 1998, v.34, n.9, p.851-852, DOI: http://dx.doi.org/10.1049/el:19980625.

SHANKAR, P.M. Error rates in generalized shadowed fading channels. Wireless Personal Commun., Feb. 2004, v.28, n.3, p.233-238, DOI: http://dx.doi.org/10.1023/B:wire.0000032253.68423.86.

BITHAS, P.S.; SAGIAS, N.C.; MATHIOPOULOS, P.T.; KARAGIANNIDIS, G.K.; RONTOGIANNIS, A.A. On the performance analysis of digital communications over generalized-K fading channels. IEEE Commun. Lett., May 2006, v.10, n.5, p.353-355, DOI: http://dx.doi.org/10.1109/LCOMM.2006.1633320.

EFTHYMOGLOU, GEORGE P. On the performance analysis of digital modulations in generalized-K fading channels. Wireless Personal Commun., Aug. 2012, v.65, n.3, p.643-651, DOI: http://dx.doi.org/10.1007/s11277-011-0277-8.

GOLDSMITH, A.J.; VARAIYA, P.P. Capacity of fading channels with channel side information. IEEE Trans. Inf. Theory, Nov. 1997, v.43, n.6, p.1986-1992, DOI: http://dx.doi.org/10.1109/18.641562.

PANDIT, SHWETA; SINGH, G. Channel capacity in fading environment with CSI and interference power constraints for cognitive radio communication system. Wireless Networks, May 2015, v.21, n.4, p.1275-1288, DOI: http://dx.doi.org/10.1007/s11276-014-0849-0.

LAOURINE, AMINE; ALOUINI, MOHAMED-SLIM; AFFES, SOFIENE; STEPHENNE, ALEX. On the capacity of generalized-k fading channels. IEEE Trans. Wireless Commun., Jul. 2008, v.7, n.7, p.2441-2445, DOI: http://dx.doi.org/10.1109/TWC.2008.070103.

EFTHYMOGLOU, G.P.; ERMOLOVA, N.Y.; AALO, V.A. Channel capacity and average error rates in generalized-K fading channels. IET Commun., 2010, v.4, n.11, p.1364-1372, DOI: http://dx.doi.org/10.1049/iet-com.2009.0457.

DI RENZO, MARCO; GRAZIOSI, FABIO; SANTUCCI, FORTUNATO. Channel capacity over generalized fading channels: A novel MGF-based approach for performance analysis and design of wireless communication systems. IEEE Trans. Vehicular Technol., Jan. 2010, v.59, n.1, p.127-149, DOI: http://dx.doi.org/10.1109/TVT.2009.2030894.

DWIVEDI, V.K.; SINGH, G. Marginal moment generating function based analysis of channel capacity over correlated Nakagami-m fading with maximal-ratio combining diversity. PIER B, 2012, v.41, p.333-356, DOI: http://dx.doi.org/10.2528/PIERB12041901.

DWIVEDI, VIVEK K.; SINGH, G. Moment generating function based performance analysis of maximal-ratio combining diversity receivers in the generalized-K fading channels. Wireless Personal Commun., Aug. 2014, v.77, n.3, p.1959–1975, DOI: http://dx.doi.org/10.1007/s11277-014-1618-1.

SIMON, MARVIN K.; ALOUINI, MOHAMED-SLIM. Digital Communication over Fading Channels: A Unified Approach to Performance Analysis. New York: John Wiley and Sons, 2000, DOI: http://dx.doi.org/10.1002/0471200697.

KOSTIC, I.M. Analytical approach to performance analysis for channel subject to shadowing and fading. IEE Proc. Commun., Dec. 2005, v.152, n.6, p.821-827, DOI: http://dx.doi.org/10.1049/ip-com:20045126.

ALOUINI, M.-S.; ABDI, A.; KAVEH, M. Sum of gamma variates and performance of wireless communication systems over Nakagami-fading channels. IEEE Trans. Vehicular Technol., Nov. 2001, v.50, n.6, p.1471-1480, DOI: http://dx.doi.org/10.1109/25.966578.

SIMON, M.K.; ALOUINI, M.-S. A unified approach to the performance analysis of digital communication over generalized fading channels. Proc. IEEE, Sep. 1998, v.86, n.9, p.1860-1877, DOI: http://dx.doi.org/10.1109/5.705532.

DWIVEDI, VIVEK K.; SINGH, G. A novel moment generating function based performance analysis over correlated Nakagami-m fading channels. J. Computational Electron., Dec. 2011, v.10, n.4, p.373–381, DOI: http://dx.doi.org/10.1007/s10825-011-0372-9.

KO, YOUNG-CHAI; ALOUINI, M.-S.; SIMON, M.K. Outage probability of diversity systems over generalized fading channels. IEEE Trans. Commun., Nov. 2000, v.48, n.11, p.1783-1787, DOI: http://dx.doi.org/10.1109/26.886467.

ANNAMALAI, A.; TELLAMBURA, C.; BHARGAVA, V.K. Simple and accurate methods for outage analysis in cellular mobile radio systems — a unified approach. IEEE Trans. Commun., Feb. 2001, v.49, n.2, p.303-316, DOI: http://dx.doi.org/10.1109/26.905889.

VEERAVALLI, V.V. On performance analysis for signaling on correlated fading channels. IEEE Trans. Commun., Nov. 2001, v.49, n.11, p.1879-1883, DOI: http://dx.doi.org/10.1109/26.966050.

ALOUINI, M.-S.; GOLDSMITH, A.J. A unified approach for calculating error rates of linearly modulated signals over generalized fading channels. IEEE Trans. Commun., Sept. 1999, v.47, n.9, p.1324-1334, DOI: http://dx.doi.org/10.1109/26.789668.

THEOFILAKOS, PANAGIOTIS; KANATAS, ATHANASIOS G.; EFTHYMOGLOU, GEORGE P. Performance of generalized selection combining receivers in K fading channels. IEEE Commun. Lett., Nov. 2008, v.12, n.11, p.816-818, DOI: http://dx.doi.org/10.1109/LCOMM.2008.080779.

The Wolfram Function Site, 2008, http://functions.wolfram.com.

GRADSHTEYN, I.S.; RYZHIK, I.M. Table of Integrals, Series, and Products, Ed. 7. New York: Academic Press, 2007.

SHANNON, C.E. A mathematical theory of communication. Bell Sys. Tech. J., Jul. 1948, v.27, n.3, p.379-423, DOI: http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x.

ALOUINI, M.-S.; GOLDSMITH, A.J. Capacity of Rayleigh fading channels under different adaptive transmission and diversity-combining techniques. IEEE Trans. Vehicular Technol., Jul. 1999, v.48, n.4, p.1165-1181, DOI: http://dx.doi.org/10.1109/25.775366.

PRUDNIKOV, A.P.; BRYCHKOV, Y.A.; MARICHEV, O.I. Integrals and Series: More Special Functions, Vol. 3. Gordon and Breach Science, 1990.

Published

2016-08-14

Issue

Section

Research Articles