Electrothermal analysis of GaN power submicron field-effect heterotransistors

Authors

DOI:

https://doi.org/10.3103/S0735272716020035

Keywords:

submicron heterostructure transistor, gallium nitride, thermal fields, self-heating effect, gain frequency characteristics

Abstract

Physical processes and self-heating factors of in a power submicron field-effect heterotransistor have been considered. Mathematical models were proposed and the electrothermal analysis of heterotransistor parameters and characteristics was performed. The impact of thermal processes on parameters of the circuit model and the output frequency characteristics of submicron heterotransistor was shown on the basis of analysis of temperature fields. The relationship of the transistor thermal resistance as a function of its geometry and thermophysical parameters has been established.

References

FARLOW, S.J. Partial Differential Equations for Scientists and Engineers. New York: Dover Publications, 1993.

KARTASHOV, E.M. Analytical Methods in the Theory of Thermal Conductivity of Solid Bodies. Moscow: Vyssh. Shkola, 2001 [in Russian].

DUL’NEV, G.N.; PARFENOV, V.G.; SIGALOV, A.V. Calculation Methods of Thermal Mode in Semiconductor Devices. Moscow: Radio i Svyaz’, 1990 [in Russian].

VERZHBITSKII, V.M. Basics of Numerical Methods. Moscow: Vyssh. Shkola, 2002 [in Russian].

SEGERLIND, L.J. Applied Finite Element Analysis, 2nd ed. Wiley, 1984.

ZARUBIN, V.S. Engineering Methods of Solving the Heat Conduction Problems. Moscow: Energoatomizdat, 1983 [in Russian].

SAMARSKII, A.A.; VABISHEVICH, P.N. Computational Heat Transfer. Moscow: Editorial URSS, 2003 [in Russian].

BANERJEE, P.K.; BUTTERFIELD, R. Boundary Element Methods in Engineering Science. McGraw-Hill, 1981.

KOVAL’, V.A.; FEDASYUK, D.V.; MASLOV, V.V.; TARNOVSKII, V.F. CAD for Microcircuitry Thermal Design. Vyssh. Shkola, 1988 [in Russian].

MEL’NIKOV, A.A. Calculation of temperature fields in multilayer photodetector structures. Microsystem Technique, 2000, n.2, p.21-26.

LEE, SANG-SOO; ALLSTOT, D.J. Electrothermal simulation of integrated circuits. IEEE J. Solid-State Circuits, Dec. 1993, v.28, n.12, p.1283-1293, DOI: http://dx.doi.org/10.1109/4.262001.

TURKES, P.; SIGG, J. Electro-thermal simulation of power electronic systems. Microelectron. J., Nov. 1998, v.29, n.11, p.785-790, DOI: http://dx.doi.org/10.1016/S0026-2692(97)00092-X.

PETROSYANTS, K.O. Simulation of thermal behavior of electronic components. Proc. of XII Sci. and Tech. Conf. on Solid State Electronics. Complex Functional Units of REA, Moscow, Russia. MNTORES im. A.S. Popov, 2013, p.229-232.

DARWISH, A.M.; BAYBA, A.J.; HUNG, H.A. Thermal resistance calculation of AlGaN–GaN devices. IEEE Trans. Microwave Theory Tech., Nov. 2004, v.52, n.11, p.2611-2620, DOI: http://dx.doi.org/10.1109/TMTT.2004.837200.

MOSKALYUK, V.A.; TIMOFEEV, V.I.; FEDYAI, A.V. Very High-Speed Electronic Devices: Tutorial. Kyiv: NTUU KPI, 2012 [in Russian].

TIMOFEYEV, V.; SEMENOVSKAYA, H. Thermal resistance of power submicron heterojunction field-effect transistors. Proc. of IEEE 33 Int. Sci. Conf. on Electronics and Nanotechnology, ELNANO, 16-19 Apr. 2013, Kyiv, Ukraine. IEEE, 2013, p.47-50, DOI: http://dx.doi.org/10.1109/ELNANO.2013.6552007.

TIMOFEYEV, V.I.; FALEYEVA, E.M. Model of heterotransistor with quantum dots. Semicond. Phys. Quantum Electron. Optoelectron., 2010, v.13, n.2, p.186-188, http://journal-spqeo.org.ua/n2_2010/v13n2-2010-p186-188.pdf.

TIMOFEYEV, V.I.; FALEYEVA, E.M.; SEMENOVSKAYA, E.V. Thermal analysis of power heterostructure field-effect transistors. Proc. of IEEE 35 Int. Sci. Conf. on Electronics and Nanotechnology, ELNANO, 21-24 Apr. 2015, Kyiv, Ukraine. IEEE, 2015, p.239-241, DOI: http://dx.doi.org/10.1109/ELNANO.2015.7146882.

Published

2016-02-20

Issue

Section

Research Articles