Formation peculiarities and properties of ohmic contacts to n-GaN(AlN) and artificial diamond

Authors

  • Volodymyr Sheremet V. E. Lashkaryov Institute of Semiconductor Physics of NAS of Ukraine, Ukraine

DOI:

https://doi.org/10.3103/S073527271310004X

Keywords:

ohmic contact, contact resistivity, current flow mechanism, Oze spectroscopy, X-Ray diffractometry

Abstract

The paper considers ohmic contacts of Au–TiBx–Al–Ti–n–GaN, Au–Pd–Ti–Pd–n–AlN and Au–Pd–Ti–n–C to the promising for use in microelectronics wide-gap semiconductors. Ohmic contact formation takes place after sequential layering of metal with further fast thermal processing, which leads to solid-phase reactions between the semiconductor and metal. It is shown that the use of X-ray amorphous TiBx layer in ohmic contact as the diffusion barrier allows for creating thermal stability contacts up to T = 900 °C. Current flow in the considered ohmic contacts is described using a model with current flow along metal shunts considering diffusion limitation on the charge carrier supply.

References

ANNAIG, D.; GRAZIELLA, G.; DEMAZEAU, G. Gallium nitride bulk crystal growth processes: a review. Mater. Sci. Eng. R: Reports, v.50, n.6, p.167-194, 2006. doi: http://dx.doi.org/10.1016/j.mser.2005.11.001">10.1016/j.mser.2005.11.001.

Handbook Series on Semiconductor Parameters, Vol. 1, 2. London: World Scientific, 1996, 1999 [ed. by M. Levinstein, S. Rumyantsev and M. Shur].

KAMATA, HIROYUKI; NAOE, KUNIHIRO; SANADA, KAZUO; ICHINOSE, NOBORU. Single-crystal growth of aluminum nitride on 6H-SiC substrates by an open-system sublimation method. J. Crystal Growth., v.311, n.5, p.1291-1295, 2009. doi: http://dx.doi.org/10.1016/j.jcrysgro.2008.12.025">10.1016/j.jcrysgro.2008.12.025.

BLANK, T.V. AND GOL’DBERG, YU.A. Mechanisms of current flow in metal-semiconductor ohmic contacts. Semiconductors, v.41, n.11, p.1263-1292, 2007. doi: http://dx.doi.org/10.1134/S1063782607110012">10.1134/S1063782607110012.

SHRETTER, YU.G.; REBANE, YU.T.; ZYKOV, B.A.; SIDOROV, V.G. Wide-Gap Semiconductors. St. Petersburg: Nauka, 2001. 125 p. [in Russian].

VASILYEV, A.G.; KOLKOVSLIY, YU.V.; LONTSEVOY, YU.A. Microwave Transistors Based on Wide-Gap Semiconductors. Moscow: Tekhnosfera, 2011. 256 p. [in Russian].

YILMASOGLU, O.; MUTAMBA, K.; PAVLIDIS, D.; KARADUMAN, T. First observation of bias oscillations in GaN Gunn diodes on GaN substrate. IEEE Trans. Electron Devices, v.55, n.6, p.1563-1567, 2008. doi: http://dx.doi.org/10.1109/TED.2008.921253">10.1109/TED.2008.921253.

SHEREMET, V.N. Formation peculiarities and electro-physical properties of ohmic contacts to gallium nitride (review). Optical Electronics and Semiconductor Devices, v.44, p.41-59, 2009.

MOHAMMAD, S. NOOR. Contact mechanisms and design principles for alloyed ohmic contacts to n-GaN. J. Appl. Phys., v.95, n.12, p.7940-7953, 2004. doi: http://dx.doi.org/10.1063/1.1712016">10.1063/1.1712016.

TRETYAKOV, T.D. Solid-Phase Reactions. Moscow: Khimiya, 1978. 360 p. [in Russian].

PIDUN, MARKUS; KARDUCK, PETER; MAYER, JOACHIM; HEIME, KLAUS; SCHINELLER, BERND; WALTHER, THOMAS. Auger depth profile analysis and EFTEM analysis of annealed Ti/Al-contacts on Si-doped GaN. Appl. Surface Sci., v.179, n.1–4, p.213-221, 2001. doi: http://dx.doi.org/10.1016/S0169-4332(01)00282-3">10.1016/S0169-4332(01)00282-3.

FOMENKO, V.S. Emission Properties of Materials. Reference Book. Kyiv: Naukova Dumka, 1981. 340 p. [in Russian].

BELYAEV, A.E.; BOLTOVETS, N.S.; IVANOV, V.N.; KAPITANCHUK, L.M.; KLADKO, V.P.; KONAKOVA, R.V.; KUDRYK, YA.YA.; KUCHUK, A.V.; LYTVYN, O.S.; MILENIN, V.V.; SHEREMET, V.N.; SVESHNIKOV, YU.N. Development of high-stable contact systems to gallium nitride microwave diodes. Semicond. Phys. Quantum Electron. Optoelectron., v.10, n.4, p.1-8, 2007, http://journal-spqeo.org.ua/n4_2007/v10n4-07-p01-08.pdf "> http://journal-spqeo.org.ua/n4_2007/v10n4-07-p01-08.pdf .

SACHENKO, A.V.; BELYAEV, A.E.; BOLTOVETS, N.S.; ZHILYAEV, YU.V.; KLAD’KO, V.P.; KONAKOVA, R.V.; KUDRYK, YA.YA.; PANTELEEV, V.N.; SHEREMET, V.N. Resistance formation mechanisms for contacts to n-GaN and n-AlN with high dislocation density. Phys. Status Solidi (C), v.10, n.3, p.498-500, 2013. doi: http://dx.doi.org/10.1002/pssc.201200530">10.1002/pssc.201200530.

ZHILYAEV, YU.V. AND RODIN, S.N. Chloride vapor-phase epitaxy of gallium nitride at a reduced source temperature. Tech. Phys. Lett., v.36, n.5, p.397-399, 2010. doi: http://dx.doi.org/10.1134/S1063785010050020">10.1134/S1063785010050020.

SACHENKO, A.V.; BELYAEV, A.E.; BOLTOVETS, N.S.; ZHILYAEV, YU.V.; KAPITANCHUK, L.M.; KLAD’KO, V.P.; KONAKOVA, R.V.; KUDRYK, YA.YA.; KUCHUK, A.V.; NAUMOV, A.V.; PANTELEEV, V.V.; SHEREMET, V.N. Investigation of resistance formation mechanisms for contacts to n-AlN and n-GaN with a high dislocation density. Semicond. Phys. Quantum Electron. Optoelectron., v.15, n.4, p.351-357, 2012, http://journal-spqeo.org.ua/n4_2012/v15n4-2012-p351-357.pdf "> http://journal-spqeo.org.ua/n4_2012/v15n4-2012-p351-357.pdf.

BASANETS, V.V.; BOLTOVETS, N.S.; GUTSUL, A.V.; ZORENKO, A.V.; RAL’CHENKO, V.G.; BELYAEV, A.E.; KLAD’KO, V.P.; KONAKOVA, R.V.; KUDRIK, YA.YA.; KUCHUK, A.V.; MILENIN, V.V. Integrated microwave (centimeter-range) modulator on polycrystalline diamond layers. Tech. Phys., v.58, n.3, p.420-424, 2013. doi: http://dx.doi.org/10.1134/S1063784213030055">10.1134/S1063784213030055.

RALCHENKO, V.G.; SAVELIEV, A.V.; POPOVICH, A.F.; VLASOV, I.I.; VORONINA, S.V.; ASHKINAZI, E.E. CVD diamond coating of AlN ceramic substrates to enhance heat removal. Russian Microelectronics, v.35, n.4, p.205-209, 2006. doi: http://dx.doi.org/10.1134/S1063739706040019">10.1134/S1063739706040019.

HARPER, R.E.; JOHNSTON, C.; CHALKER, P.R.; TOTTERDELL, D.; BUCKLEY-GOLDER, I.M.; WERNER, M.; OBERMEIER, E.; VAN ROSSUM, M. Contacts to doped and undoped polycrystalline diamond films. Diamond Relat. Mater., v.1, n.5-6, p.692-696, 1992. doi: http://dx.doi.org/10.1016/0925-9635(92)90193-R ">10.1016/0925-9635(92)90193-R.

WANG, F.M.; CHEN, M.W.; LAI, Q.B. Metallic contacts to nitrogen and boron doped diamond-like carbon films. Thin Solid Films, v.518, n.12, p.3332-3336, 2010. doi: http://dx.doi.org/10.1016/j.tsf.2009.10.041">10.1016/j.tsf.2009.10.041.

MURET, P.; PRUVOST, F.; SABY, C.; LUCAZEAU, E.; NGUYEN TAN, T.A.; GHEERAERT, E.; DENEUVILLE, A. Carbide contacts on homoepitaxial diamond films. Diamond Relat. Mater., v.8, n.2–5, p.961-965, 1999. doi: http://dx.doi.org/10.1016/S0925-9635(98)00380-X">10.1016/S0925-9635(98)00380-X.

BLANK, T.V.; GOLDBERG, YU.A.; KONSTANTINOV, O.V.; NIKITIN, V.G.; POSSE, E.A. Peculiarities in the mechanism of current flow through an ohmic contact to gallium phosphide. Tech. Phys. Lett., v.30, n.10, p.806-809, 2004. doi: http://dx.doi.org/10.1134/1.1813716">10.1134/1.1813716.

BLANK, T.V.; GOL’DBERG, YU.A.; KONSTANTINOV, O.V.; NIKITIN, V.G.; POSSE, E.A. The mechanism of current flow in an alloyed In-GaN ohmic contact. Semiconductors, v.40, n.10, p.1173-1177, 2006. doi: http://dx.doi.org/10.1134/S1063782606100095">10.1134/S1063782606100095.

BELYAEV, A.E.; BOLTOVETS, N.S.; KONAKOVA, R.V.; KUDRYK, YA.YA.; SACHENKO, A.V.; SHEREMET, V.N.; VINOGRADOV, A.O. Temperature dependence of contact resistance for Au-Ti-Pd2Si-n+ Si ohmic contacts subjected to microwave irradiation. Semiconductors, v.46, n.3, p.330-333, 2012. doi: http://dx.doi.org/10.1134/S1063782612030074">10.1134/S1063782612030074.

SACHENKO, A.V.; BELYAEV, A.E.; BOBYL, A.V.; BOLTOVETS, N.S.; IVANOV, V.N.; KAPITANCHUK, L.M.; KONAKOVA, R.V.; KUDRYK, YA.YA.; MILENIN, V.V.; NOVITSKII, S.V.; SAKSEEV, D.A.; TARASOV, I.S.; SHEREMET, V.N.; YAGOVKINA, M.A. Temperature dependence of the contact resistance of ohmic contacts to III-V compounds with a high dislocation density. Semiconductors, v.46, n.3, p.334-341, 2012. doi: http://dx.doi.org/10.1134/S1063782612030177">10.1134/S1063782612030177.

SACHENKO, A.V.; BELYAEV, A.E.; BOLTOVETS, N.S.; KONAKOVA, R.V.; KUDRYK, YA.YA.; NOVITSKII, S.V.; SHEREMET, V.N.; LI, J.; VITUSEVICH, S.A. Mechanism of contact resistance formation in ohmic contacts with high dislocation density. J. Appl. Phys., v.111, n.8, p.083701, 2012. doi: http://dx.doi.org/10.1063/1.3702850">10.1063/1.3702850.

SACHENKO, A.V.; BELYAEV, A.E.; BOLTOVETS, N.S.; VINOGRADOV, A.O.; KAPITANCHUK, L.M.; KONAKOVA, R.V.; KOSTYLYOV, V.P.; KUDRYK, YA.YA.; KLADKO, V.P.; SHEREMET, V.N. The mechanism of contact-resistance formation on lapped n-Si surfaces. Semiconductors, v.47, n.3, p.449-454, 2013. doi: http://dx.doi.org/10.1134/S1063782613030238">10.1134/S1063782613030238.

SZE, S.M. AND NG, K.K. Physics of Semiconductor Devices, 3rd ed. John Wiley & Sons, 2007. 815 p.

RHODERICK, E.H. AND WILLIAMS, R.H. Metal-Semiconductor Contacts, 2nd ed. Clarendon Press, Oxford, 1988.

SHEREMET, V.N. Effect of microwave treatment on current flow mechanism in ohmic contacts to GaN. Semicond. Phys. Quantum Electron. Optoelectron., v.16, n.3, 2013.

SHEREMET, V.N.; ZHIGUNOV, V.S.; ZHILYAEV, YU.V. Current flow mechanisms of ohmic contacts to AlN. Proc. of Young Scientists Conf. on Semiconductor Physics “Lashkaryovs Readings 2013,” 2–4 April 2013, Kyiv, Ukraine. Kyiv, 2013, p.251-253.

BELYAEV, A.E.; BOLTOVETS, N.S.; IVANOV, V.N.; KLAD’KO, V.P.; KONAKOVA, R.V.; KUDRIK, YA.YA.; KUCHUK, A.V.; MILENIN, V.V.; SVESHNIKOV, YU.N.; SHEREMET, V.N. Mechanism of dislocation-governed charge transport in Schottky diodes based on gallium nitride. Semiconductors, v.42, n.6, p.689-693, 2008. doi: http://dx.doi.org/10.1134/S1063782608060092">10.1134/S1063782608060092.

SHEREMET, V.N. Metrological aspects of measuring resistance of Ohmic contacts. Radioelectron. Commun. Syst., v.53, n.3, p.119-128, 2010. doi: http://dx.doi.org/10.3103/S0735272710030015">10.3103/S0735272710030015.

Published

2013-10-18

Issue

Section

Research Articles