Accurate modeling of nanoscale gate underlap SOI MOSFET and design of low noise amplifier for RF applications

Authors

  • Indra Vijay Singh Aligarh Muslim University, India
  • Muhmmad Shah Alam Aligarh Muslim University, India
  • G. A. Armstrong Queen’s University Belfast, United Kingdom

DOI:

https://doi.org/10.3103/S0735272713060010

Keywords:

gate underlap, non-quasi-static, silicon-on-insulator, low noise amplifier, low power

Abstract

Paper presents an accurate model by accounting non-quasi-static and extrinsic parasitic effects for 90 nm gate underlap SOI MOSFETs for RF applications. Generated Y-parameters from the model up to 20 GHz matched very well with 2D ATLAS (with an average error of ~5%), whereas results from quasi-static predictive technology model differ significantly (>20%). Calculated transit frequency fT and maximum frequency of oscillation fmax have been found as ~108 and ~130 GHz respectively. Simulated noise figure at drain-to-source current IDS ≈ 0.64 mA and drain-to-source voltage VDS = 1 V was found to be ≈2.8 dB with gate resistance Rge = 3 Ω. A low noise amplifier (LNA) designed at operating frequency of 5.8 GHz using the model has shown good match at input (S11 ≈ –15 dB), output (S22 ≈ –16 dB) and gain (S21 ≈ 15 dB). A new figure-of-merit of LNA (FoMLNA) involving signal power gain G, noise factor F and dc power consumption Pdc has been proposed. By comparing with limited available measured data of 180 nm bulk, it has been found that underlap LNA (simulated using the developed model) gives almost three times improvement in the proposed FoMLNA.

References

CHEN, C.L.; MATHEWS, R.H.; BURNS, J.A.; WYATT, P.W.; YOST, D.-R.; CHEN, C.K.; FRITZE, M.; KNECHT, J.M.; SUNTHARALINGAM, V.; SOARES, A.; KEAST, C.L. High-frequency characterization of sub-0.25-um fully depleted silicon- on-insulator MOSFETs. IEEE Electron Device Lett., v.21, n.10, p.497-499, Oct. 2000. doi: http://dx.doi.org/10.1109/55.870613">10.1109/55.870613.

JEN, STEVE H.; ENZ, CHRISTIAN; PEHLKE, DAVID R.; SCHRÖTER, MICHAEL; SHEU, BING J. A high-frequency MOS transistor model and its effects on radio-frequency circuits. Analog Integr. Circ. Signal Process., v.23, p.93-101, May 2000. doi: http://dx.doi.org/10.1023/A:1008399824651">10.1023/A:1008399824651.

KANG, IN MAN. Non-quasi-static RF model for SOI FinFET and its verification. J. Semiconductor Technol. Sci., v.10, n.2, p.160-164, June 2010.

KANG, IN MAN AND SHIN, HYUNGCHEOL. Non-quasi-static small-signal modelling and analytical parameter extraction of SOI FinFETs. IEEE Trans. Nanotechnol., v.5, n.3, p.205-210, May 2006. doi: http://dx.doi.org/10.1109/TNANO.2006.869946">10.1109/TNANO.2006.869946.

SHIMIZU, YOSHIYUKI; KIM, GUE CHOL; MURAKAMI, BUNSEI; ET AL. Drain current response delay of FD-SOI MOSFETs in RF operation. IEICE Electron. Expr., v.1, n.16, p.518-522, 2004. doi: http://dx.doi.org/10.1587/elex.1.518">10.1587/elex.1.518.

KRANTI, A.; RASKIN, J.P.; ARMSTRONG, G.A. Source/Drain engineered ultra low power analog/RF UTBB MOSFETs. Proc. of 12th IEEE Int. Conf. Ultimate Integration on Silicon, ULIS-2011 (2011). doi: http://dx.doi.org/10.1109/ULIS.2011.5757997">10.1109/ULIS.2011.5757997.

SINGH, INDRA VIJAY; ALAM, M.S.; ARMSTRONG, G.A. Design of low noise amplifier using 90nm gate underlap SOI MOSFETs for millimeter-wave applications. Proc. of IEEE Int. Conf. Multimedia, Signal Processing and Communication Technologies, IMPACT-2011 (2011). doi: http://dx.doi.org/10.1109/MSPCT.2011.6150501">10.1109/MSPCT.2011.6150501.

ATLAS manual-2011, http://www.silvaco.com ">http://www.silvaco.com.

University of California at Berkeley, USA, http://www.device.eecs.berkeley.edu/PTM">http://www.device.eecs.berkeley.edu/PTM.

SURYAGANDH, S.S.; GARG, M.; WOO, J.C.S. A device design methodology for sub-100-nm SOC applications using bulk and SOI MOSFETs. IEEE Trans. Electron Devices, v.51, n.7, p.1122-1128, 2004. doi: http://dx.doi.org/10.1109/TED.2004.829872">10.1109/TED.2004.829872.

CADDEMI, ALINA; CRUPI, GIOVANNI; MACCHIARELLA, ALESSIO. On wafer-scaled GaAs HEMTs: Direct and robust small signal modelling up to 50 GHz. Microw. Opt. Technol. Lett., v.51, n.8, p.1958-1963, Aug. 2009. doi: http://dx.doi.org/10.1002/mop.24492">10.1002/mop.24492.

PRABAKARAN, RAJESH KUMAR; BASU, ANANJAN; KOUL, SHIBAN K. A novel approach to the design of MESFET-based MMIC switches using common-gate parameter extraction. IETE J. Res., v.57, n.5, p.407-412, 2011. doi: http://dx.doi.org/10.4103/0377-2063.90149">10.4103/0377-2063.90149.

TSIVIDIS, Y. Operation and Modeling of the MOS Transistor, 2nd ed. New York: McGraw-Hill, 1999.

POULAIN, L.; WALDHOFF, N.; GLORIA, D.; DANNEVILLE, F.; DAMBRINE, G. Small signal and HF noise performance of 45 nm CMOS technology in mmW range. Proc. of IEEE Radio Frequency Integrated Circuits Symposium, RFIC-2011 (2011). doi: http://dx.doi.org/10.1109/RFIC.2011.5940646">10.1109/RFIC.2011.5940646.

PARK, JONG-TAE AND COLINGE, JEAN-PIERRE. Multiple-Gate SOI MOSFETs: device design guidelines. IEEE Trans. Electron Devices, v.49, n.12, p.2222-2229, 2002. doi: http://dx.doi.org/10.1109/TED.2002.805634">10.1109/TED.2002.805634.

Advanced Design Sytem (ADS-2011), http://www.agelent.com">http://www.agelent.com.

CRUPI, G.; SCHREURS, D.M.M.; RAFFO, A.; CADDEMI, A.; VANNINI, G. A new millimeter-wave small-signal modeling approach for pHEMTs accounting for the output conductance time delay. IEEE Trans. Microwave Theory Tech., v.56, n.4, p.741-746, 2008. doi: http://dx.doi.org/10.1109/TMTT.2008.918147">10.1109/TMTT.2008.918147.

DORIS, B. Device design considerations for ultra-thin SOI MOSFETs. Technical Digest of IEEE Int. Electron Devices Meeting, IEDM’03, 2003, p.631–634. doi: http://dx.doi.org/10.1109/IEDM.2003.1269360">10.1109/IEDM.2003.1269360.

LIM, TAO CHUAN AND ARMSTRONG, G.A. The impact of the intrinsic and extrinsic resistance of double gate SOI on RF performance. Solid State Electron., v.50, n.5, p.774-783, 2006. doi: http://dx.doi.org/10.1016/j.sse.2006.04.010">10.1016/j.sse.2006.04.010.

LEE, T.H. The Design of CMOS Radio frequency Integrated Circuits, 2nd ed. Cambridge University Press, 2003.

SONG, ICKHYUN; JEON, JONGWOOK; JHON, HEE-SAUK; KIM, JUNSOO; PARK, BYUNG-GOOK; LEE, JONG DUK; SHIN, HYUNGCHEOL. A simple figure of merit of RF MOSFET for low noise amplifier design. IEEE Electron Device Lett., v.29, n.12, p.1380-1382, 2008. doi: http://dx.doi.org/10.1109/LED.2008.2006863">10.1109/LED.2008.2006863.

ASGARAN, SAMAN; DEEN, M. JAMAL; CHEN, CHIN-HUNG. A 4-mW monolithic CMOS LNA at 5.7GHz with the gate resistance used for input matching. IEEE Microwave Wireless Compon. Lett., v.16, n.4, p.188-190, April 2006. doi: http://dx.doi.org/10.1109/LMWC.2006.872128">10.1109/LMWC.2006.872128.

WANG Y.S. AND LU, L.-H. 5.7 GHz low-power variable-gain LNA in 0.18 µm CMOS. Electron. Lett., v.41, n.2, p.66-68, 2005. doi: http://dx.doi.org/10.1049/el:20057230">10.1049/el:20057230.

Published

2013-06-01

Issue

Section

Research Articles